Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:39:14.323Z Has data issue: false hasContentIssue false

Fossil rodents in Mylodon Cave as indicators of late Pleistocene–Holocene environmental evolution in southern Chile

Published online by Cambridge University Press:  26 August 2021

Ulyses F.J. Pardiñas*
Affiliation:
Instituto de Diversidad y Evolución Austral (IDEAus—CONICET), Boulevard Brown 2915, 9120Puerto Madryn, Chubut, Argentina and Associate Researcher, Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
Luis Borrero
Affiliation:
Universidad de Buenos Aires (IMHICIHU-CONICET), Saavedra 15, piso 5° (1083 ACA), Ciudad Autónoma de Buenos Aires, Argentina
Fabiana M. Martin
Affiliation:
Centro de Estudios del Hombre Austral, Instituto de la Patagonia, Universidad de Magallanes, Chile
Mauricio Massone
Affiliation:
Centro de Estudios del Hombre Austral, Instituto de la Patagonia, Universidad de Magallanes, Chile
Fernando J. Fernández
Affiliation:
Grupo de Estudios en Arqueometría (GEArq), Facultad de Ingeniería, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires and Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
*
*Corresponding author email address: ulyses@cenpat-conicet.gob.ar

Abstract

We conducted the first taphonomic and paleoenvironmental study based on late Pleistocene–Holocene small mammal remains recovered from the famous Mylodon Cave (Cerro Benítez area, Última Esperanza, Chile). Most of the analyzed material came from the extensive excavations made by Earl Saxon in 1976. We also studied late Holocene small mammal samples of the neighboring rock shelter Dos Herraduras 1. Analyzed remains were mostly produced by owls, probably living inside the caves. In Mylodon Cave, the higher values of girdle bones are consistent with a windblown litter. We recorded nine species of rodents, seven cricetids, and two caviomorphs; almost all the identified taxa integrate recent local communities. Late Pleistocene–Holocene assemblages are characterized by the chinchilla rat Euneomys, indicating unforested areas around the caves under cold and moist climatic conditions. Middle Holocene amelioration is reflected by incremental rodent species richness, including the first record of taxa clearly associated with forest (e.g., Abrothrix lanosa). Late Holocene assemblages are markedly stable, indicating local conditions similar to the current (historical) environment. Quaternary rodents from Cerro Benítez area do not indicate abrupt environmental changes during middle–late Holocene, but a progressive trend towards forest increase.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J.A., 1905. Volume III. Zoölogy. Part I. Mammalia of Southern Patagonia. In: Scott, W.B. (Ed.), Reports of the Princeton University Expeditions to Patagonia, 1896–1899. The University, Stuttgart, pp. 1210.Google Scholar
Andrews, P., 1990. Owls, Caves and Fossils. Predation, preservation, and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK. University of Chicago Press, Chicago.Google Scholar
Bellocq, M.I., 2000. A review of the trophic ecology of the Barn Owl in Argentina. Journal of Raptor Research 34, 108119.Google Scholar
Borrero, L.A., Crivelli, E.A., Mengoni Goñalons, G., 1976. Investigaciones arqueológicas en el sitio “Alero del Diablo”, Seno de Ultima Esperanza (Chile). Anales del Instituto de la Patagonia 7, 7585.Google Scholar
Borrero, L.A., Lanata, J.L., Borella, F., 1988. Reestudiando huesos: nuevas consideraciones sobre sitios de Ultima Esperanza. Anales del Instituto de la Patagonia, Serie Ciencias Sociales 18, 135155.Google Scholar
Borrero, L.A., Lanata, J.L., Cárdenas, P., 1991. Reestudiando cuevas: nuevas excavaciones en Ultima Esperanza, Magallanes. Anales del Instituto de la Patagonia, Serie Ciencias Sociales 20, 101110.Google Scholar
Borrero, L.A., Martin, F.M., 2012. Taphonomic observations on ground sloth bone and dung from Cueva del Milodón, Ultima Esperanza, Chile: 100 years of research history. Quaternary International 278, 311.CrossRefGoogle Scholar
Borrero, L.A., Zárate, M., Miotti, L., Massone, M., 1998. The Pleistocene-Holocene transition and human occupations in the Southern cone of South America. Quaternary International 49–50, 191199.CrossRefGoogle Scholar
Borromei, A.M., Candel, M.S., Musotto, L.L., Cusminsky, G., Martínez, M.A., Coviaga, C.A., Ponce, J. F., Coronato, A., 2018. Late Holocene wet/dry intervals from Fuegian steppe at Laguna Carmen, southern Argentina, based on a multiproxy record. Palaeogeography, Palaeoclimatology, Palaeoecology 499, 5671.CrossRefGoogle Scholar
Cheme Arriaga, L., Montalvo, C.I., Sosa, R., 2012. Experiments on wind dispersal of modern rodent bones. Neues Jahrbuch für Geologie und Paläontologie 265, 185198.CrossRefGoogle Scholar
del Hoyo, J., Elliott, A., Sargatal, J., 1999. Handbook of the Birds of the World. Vol. 5: Barn Owls to Humming Birds. Lynx Edicions, Barcelona.Google Scholar
Echeverría, M.E., Bamonte, F.P., Marcos, M.A., Sottile, G.D., Mancini, M.V., 2017. Palaeohydric balance variations in eastern Andean environments in southern Patagonia (48°–52.5° S): major trends and forcings during the last ca. 8000 cal yrs BP. Review of Palaeobotany and Palynology 246, 242250.CrossRefGoogle Scholar
Echeverría, M.E., Mancini, M.V., 2018. Aportes del análisis de macrofósiles vegetales a la reconstrucción paleoecológica en relación con los registros polínicos de turbales del Holoceno, Patagonia Argentina. In: Prieto, A.R. (Ed.), Metodologías y estrategias del análisis palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica Argentina 18, 120130.Google Scholar
Echeverría, M.E., Sottile, G.D., Mancini, M.V., Fontana, S.L., 2014. Nothofagus forest dynamics and palaeoenvironmental variations during the mid and late Holocene, in southwest Patagonia. The Holocene 24, 957969.CrossRefGoogle Scholar
Emperaire, J., Laming, A., 1954. La Grotte du Mylodon (Patagonie Occidentale). Journal de la Société des Américanistes, Nouevelle Série 43, 173205.CrossRefGoogle Scholar
Errington, P.L., 1930. The pellet analysis method of raptor food habits study. Condor 32, 292296.CrossRefGoogle Scholar
Evans, E.M.N., Van Courvering, J.H., Andrews, P., 1981. Palaeoecology of Miocene sites in Western Kenya. Journal of Human Evolution 10, 3548.CrossRefGoogle Scholar
Favier Dubois, C.M., Borrero, L.A., 1997. Geoarchaeological perspectives on late Pleistocene faunas from Ultima Esperanza Sound. Magallanes, Chile. Anthropologie 35, 207213.Google Scholar
Feijoo, M., D'Elía, G., Pardiñas, U.F.J., Lessa, E., 2010. Systematics of the southern Patagonian-Fueguian endemic Abrothrix lanosus (Rodentia: Sigmodontinae): Phylogenetic position, karyotypic and morphological data. Mammalian Biology 75, 122137.CrossRefGoogle Scholar
Fernández, F.J., Montalvo, C.I., Fernández-Jalvo, Y., Andrews, P., López, J.M., 2017. A re-evaluation of the taphonomic methodology for the study of small mammal fossil assemblages of South America. Quaternary Science Reviews 155, 3749.CrossRefGoogle Scholar
Formoso, A., Teta, P., Carbajo, A., Pardiñas, U.F.J., 2016. Unraveling the patterns of small mammal species richness in the southernmost aridlands of South America. Journal of Arid Environments 134, 136144.CrossRefGoogle Scholar
Gifford-Gonzalez, D., 2018. An Introduction to Zooarchaeology. Springer International Publishing AG, Cham, Switzerland.CrossRefGoogle Scholar
Grayson, D.K., 1984. Quantitative Zooarchaeology. Topics in the Analysis of Archaeological Faunas. Studies in Archaeological Science. Academic Press, Inc., New York.Google Scholar
Guzmán, J., Ortiz, J.C., Cañón, C., 2015. Variación morfológica de Oligoryzomys longicaudatus magellanicus (Rodentia: Sigmodontinae) al oeste de los campos de hielo patagónico sur en Chile. Mastozoología Neotropical 22, 375384.Google Scholar
Guzmán Sandoval, J., 2010. Mammalia, Rodentia, Sigmodontinae, Abrothrix lanosus (Thomas, 1897): Topotype, distribution, and new locality records for Chile. Check List 6, 383386.Google Scholar
Hammer, Ø., Harper, D.A.P., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontología Electrónica 4, 9 pp. https://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Hasenack, H., Souza da Silva, J., Weber, E.J., Hofmann, G.S., 2017. Digital version of Hueck's vegetation map of South America: 50 years after the release of his book on the sub-continent's forests. Geografía y Sistemas de Información Geográfica (GEOSIG) 9, 1115.Google Scholar
Hauthal, R., 1899. Reseña de los hallazgos en las cavernas de Última Esperanza (Patagonia Austral). Revista del Museo de La Plata 9, 411420.Google Scholar
Heusser, C.J., 1994a. Paleoindians and fire during the Quaternary in southern South America. Revista Chilena de Historia Natural 67, 435443.Google Scholar
Heusser, C.J., 1994b. Quaternary paleoecology of Fuego-Patagonia. Revista do Instituto Geológico, São Paulo 15, 726.Google Scholar
Heusser, C.J., 2003. Ice Age southern Andes—A Chronicle of Paleoecological Events. Developments in Quaternary Science, 3. Elsevier, Amsterdam.Google Scholar
Heusser, C.J., Borrero, L.A., Lanata, J.L., 1994. Late-glacial vegetation at Cueva del Mylodon. Anales del Instituto de la Patagonia 21, 97102.Google Scholar
Humphrey, P.S., Péfaur, J.E., Rasmussen, P.C., 1993. Avifauna of three Holocene cave deposits in Southern Chile. Occasional Papers of the Museum of Natural History, University of Kansas 154, 137.Google Scholar
Ippi, S., Rozzi, R., 2004. Actividad diurnal y nocturna del Concón (Strix rufipes) en los bosques del Cabo de Hornos. Boletín Chileno de Ornitología 10, 912.Google Scholar
Iriarte, J.A., Franklin, W.L., Johnson, W.E., 1990. Diets of sympatric raptors in southern Chile. Journal of Raptor Research 24, 4146.Google Scholar
Jaksic, F., Rau, J., Yáñez, J., 1978. Oferta de presas y predación por Bubo virginianus (Strigidae) en el Parque Nacional “Torres del Paine”. Anales del Instituto de la Patagonia 9, 199202.Google Scholar
Johnson, W.E., Franklin, W.L., Iriarte, J.A., 1990. The mammalian fauna of the northern Chilean Patagonia: a biogeographical dilemma. Mammalia 54, 457469.CrossRefGoogle Scholar
Korth, W., 1979. Taphonomy of microvertebrate fossil assemblages. Annals of Carnegie Museum 15, 235285.Google Scholar
Kramer, K.M., Monjeau, J.A., Birney, E.C., Sikes, R.S., 1999. Phyllotis xanthopygus. Mammalian Species, American Society of Mammalogists 617, 17.Google Scholar
Labarca, R., González-Guarda, E., Lizama-Catalán, A., Villavicencio, N.A., Alarcón-Muñoz, J., Suazo-Lara, F., Oyanadel-Urbina, P., et al. , 2020. Taguatagua 1: new insights into the late Pleistocene fauna, paleoenvironment, and human subsistence in a unique lacustrine context in central Chile. Quaternary Science Reviews 238, 106282. https://doi.org/10.1016/j.quascirev.2020.106282.CrossRefGoogle Scholar
Latorre, C., 1998. Paleontología de mamíferos del Alero Tres Arroyos I, Tierra del Fuego, XII Región, Chile. Anales del Instituto de la Patagonia, Serie Ciencias Naturales 26, 7790.Google Scholar
Lehmann-Nitsche, R., 1899. Coexistencia del hombre con un gran desdentado y un equino en las cavernas patagónicas. Revista del Museo de La Plata 9, 455473.Google Scholar
Lessa, E.P., D'Elía, G., Pardiñas, U.F.J., 2012. Mammalian biogeography of Patagonia and Tierra del Fuego. In: Patterson, B.D., Costa, L.P. (Eds.), Bones, Clones, and Biomes: an 80-Million Year History of Recent Neotropical Mammals. University of Chicago Press, Chicago, pp. 379398.CrossRefGoogle Scholar
Long, A., Martin, P.S., 1974. Death of American ground sloths. Science 186, 638640.CrossRefGoogle ScholarPubMed
Lowe, J.J., Walker, M.J., 2013. Reconstructing Quaternary Environments. Routledge, Taylor and Francis Group, New York.Google Scholar
Mancini, M.V., 2001. Análisis polínico de un sitio de altura del Holoceno Tardío: Cerro Verlika 1, Sudoeste de Santa Cruz. Ameghiniana 38, 455462.Google Scholar
Mancini, M.V., 2002. Vegetation and climate during the Holocene in Southwest Patagonia, Argentina. Review of Palaeobotany and Palynology 122, 101115.CrossRefGoogle Scholar
Mancini, M.V., 2009. Holocene vegetation and climate changes from a peat pollen record of the forest-steppe ecotone, Southwest of Patagonia (Argentina). Quaternary Science Reviews 28: 14901497.CrossRefGoogle Scholar
Mancini, M.V., Bamonte, F.P., Marcos, M.A., Sottile, G.D., Echeverría, M.E., 2018. Análisis y métodos paleoecológicos para la reconstrucción de comunidades de bosque y estepas de Patagonia, Argentina. In: Prieto, A.R. (Ed.), Metodologías y estrategias del análisis palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica Argentina 18, 77101.Google Scholar
Markgraf, V., 1985. Late Pleistocene faunal extinctions in southern Patagonia. Science 228, 11101112.CrossRefGoogle ScholarPubMed
Markgraf, V., 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102, 5368.CrossRefGoogle Scholar
Marti, C.D., 1987. Raptor food habits studies. In: Pendleton, B.G., Millsap, B.A., Kline, K.W., Bird, D.A. (Eds.), Raptor management techniques manual. National Wildlife Federation Scientific Technical Series, Washington, D.C. 10, 6779.Google Scholar
Martin, F.M., 2013. Tafonomía y paleoecología de la transición Pleistoceno–Holoceno en Fuego-Patagonia. Interacción entre humanos y carnívoros y su importancia como agentes en la formación del registro fósil. Ediciones de la Universidad de Magallanes, Punta Arenas. https://www.scienceopen.com/document?vid=c9c88e2a-9b21-44d2-8d79-d07e2caa7445.Google Scholar
Martin, F.M., San Román, M., Morello, F., Todisco, D., Prevosti, F.J., Borrero, L.A., 2013. Land of the ground sloths: recent research at Cueva Chica, Ultima Esperanza, Chile. Quaternary International 305, 5666.CrossRefGoogle Scholar
Martin, F.M., Todisco, D., Rodet, J., San Román, M., Morello, F., Prevosti, F.J., Stern, C., Borrero, L.A., 2015. Nuevas excavaciones en Cueva del Medio. Procesos de formación de la cueva y avances en los estudios de interacción entre cazadores recolectores y fauna extinta (Pleistoceno final, Patagonia meridional). Magallania 43, 165189.CrossRefGoogle Scholar
Martinic, M., 1996. La Cueva del milodón: historia de los hallazgos y otros sucesos, relación de los estudios realizados a lo largo de un siglo (1895–1995). Anales del Instituto de la Patagonia, Serie Ciencias Humanas 24, 4380.Google Scholar
Massone, M., Borrero, L.A., Martin, F.M., Cárdenas, P., 1993. Investigaciones Arqueológicas en Dos Herraduras, Última Esperanza. Report Project National Geographic Society—Universidad de Magallanes, 21 pp.Google Scholar
Montalvo, C.I., Cheme Arriaga, L., Tallade, P. O., Sosa, R., 2012. Owl pellet dispersal by wind: observations and experimentations. Quaternary International 278, 6370.CrossRefGoogle Scholar
Montalvo, C.I., Fernández, F.J., 2019. Review of the actualistic taphonomy of small mammals ingested by South American Predators. Its importance in the interpretation of the fossil record. Publicación Electrónica de la Asociación Paleontológica Argentina 19, 1846.Google Scholar
Montalvo, C.I., Fernández, F.J., Tallade, P.O., 2016. The role of Bubo virginianus magellanicus as rodent bone accumulator in archaeological sites. A case study for the Atuel River (Mendoza, Argentina). International Journal of Osteoarchaeology 26, 974986.10.1002/oa.2509CrossRefGoogle Scholar
Moore, D.M., 1978. Post-glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon. Botanical Journal of the Linnean Society 77, 177202.CrossRefGoogle Scholar
Moreno, P.I., Francois, J.P., Villa-Martínez, R.P., Moy, C.M., 2009. Millennial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quaternary Science Reviews 28, 2538.CrossRefGoogle Scholar
Moreno, P.I., Villa-Martínez, R., Cárdenas, M.L., Sagredo, E.A., 2012. Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52°S). Quaternary Science Reviews 41, 121.CrossRefGoogle Scholar
Nordenskiöld, E., 1900 [1996]. Observaciones y relevamientos en cuevas de Ultima Esperanza en Patagonia occidental. Anales del Insituto de la Patagonia, Serie Ciencias Humanas 24, 99124.Google Scholar
Osgood, W.H., 1943. The mammals of Chile. Field Museum of Natural History, Zoological Series 30, 1268.Google Scholar
Pardiñas, U.F.J., 2000. Tafonomía de microvertebrados en yacimientos arqueológicos de Patagonia. Arqueología 9, 265308.Google Scholar
Pardiñas, U.F.J., 1999. Los Roedores Muroideos del Pleistoceno Tardío–Holoceno en la Región Pampeana (sector este) y Patagonia (República Argentina): Aspectos Taxonómicos, Importancia Bioestratigráfica y Significación Paleoambiental. Doctoral Dissertation, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.Google Scholar
Pardiñas, U.F.J., Candela, A.M., 2017. The last mystery of the Last Hope: on the supposed occurrence of “Megamys” (Mammalia: Rodentia) in Cueva del milodón. Ameghiniana 54, 247251.CrossRefGoogle Scholar
Pardiñas, U.F.J., Martin, F., Borrero, L.A., Massone, M., Fernández, F.J., 2020. Micromamíferos, tafonomía y paleoambientes del Cuaternario Tardío en Tierra Del Fuego: los roedores de Tres Arroyos 1. Magallania 48, 93122.CrossRefGoogle Scholar
Pardiñas, U.F.J., Teta, P., D'Elía, G., Lessa, E., 2011a. The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biological Journal of the Linnean Society 103, 495513.CrossRefGoogle Scholar
Pardiñas, U.F.J., Teta, P., Formoso, A., Barberena, R., 2011b. Roedores del extremo austral: tafonomía, diversidad y evolución ambiental durante el Holoceno tardío. In: Borrero, L., Borrazzo, K. (Compiler), Bosques, Montañas y Cazadores. Investigaciones Arqueológicas en Patagonia Meridional. Editorial Dunken, Buenos Aires, pp. 6184.Google Scholar
Pardiñas, U.F.J., Udrizar Sauthier, D., Teta, P., 2009. Roedores del extremo sudoriental continental de Argentina. Mastozoología Neotropical 16, 471473.Google Scholar
Patterson, B.D., Gallardo, M.H., Freas, K.E., 1984. Systematics of mice of the subgenus Akodon (Rodentia: Cricetidae) in southern South America, with the description of a new species. Fieldiana, Zoology 23, 116.Google Scholar
Patton, J.L., Pardiñas, U.F.J., D'Elía, G. (Eds.), 2015. Mammals of South America. Volume 2, Rodents. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Pearson, O.P., 1987. Mice and the postglacial history of the Traful Valley of Argentina. Journal of Mammalogy 68, 469478.CrossRefGoogle Scholar
Pérez, L.M., Toledo, N., Vizcaíno, S.F., Bargo, M.S., 2018. Los restos tegumentarios de perezosos terrestres (Xenarthra, Folivora) de Última Esperanza (Chile). Cronología de los reportes, origen y ubicación actual. Publicación Electrónica de la Asociación Paleontológica Argentina 18, 121.Google Scholar
Pine, R.H., Miller, S.D., Schamberger, M.L., 1979. Contributions to the mammalogy of Chile. Mammalia 43, 339376.CrossRefGoogle Scholar
Prieto, A.R., Mancini, M.V., de Porras, M.E., Bamonte, F.P., Marcos, M.A., 2018. Arqueopalinología: una revisión del análisis polínico en el contexto de sitios arqueológicos de sociedades de cazadores-recolectores de la Argentina (32°–52° S). In: Prieto, A.R. (Ed.), Metodologías y estrategias del análisis palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica Argentina 18, 576.Google Scholar
Quintana, C., 2015. Tafonomía de contenidos dispersos de egagrópilas de Tyto furcata en un ambiente serrano. Historia Natural 5, 2947.Google Scholar
Rabassa, J. (Ed.), 2008. The Late Cenozoic of Patagonia and Tierra del Fuego, 1st ed. Elsevier Science Publishers BV, Amsterdam.Google Scholar
Rau, J.R., Yáñez, J., 1980. Cricétidos fósiles de la cueva del Milodón, Chile (MAMMALIA, CRICETIDAE). Noticiario Mensual del Museo Nacional de Historia Natural de Chile 285, 910.Google Scholar
Rau, J.R., Yáñez, J., 1981. Nuevos antecedentes sobre la alimentación de Bubo virginianus Vieillot, 1817 en Magallanes (Aves, Strigiformes, Strigidae). Noticiario Mensual del Museo Nacional de Historia Natural de Chile 295, 910.Google Scholar
Rau, J.R., Yáñez, J., Jaksic, F., 1978. Confirmación de Notiomys macronyx alleni O. y Eligmodontia typus typus C., y primer registro de Akodon (Abrothrix) lanosus T. (Rodentia: Cricetidae) en la zona de Ultima Esperanza (XII Región, Magallanes). Anales del Instituto de la Patagonia 9, 203204.Google Scholar
Recasens, C., Ariztegui, D., Gebhardt, C., Gogorza, C., Haberzettl, T., Hahn, A., Kliem, P., et al. , 2012. New insights into palaeoenvironmental changes in Laguna Potrok Aike, southern Patagonia, since the Late Pleistocene: The PASADO multiproxy record. The Holocene 22, 13231335.CrossRefGoogle Scholar
Reed, D.N., 2003. Micromammal Paleoecology: Past and Present Relationships Between African Small Mammals and their Habitats. Ph.D. Dissertation, Stony Brook University, Stony Brook, NY.Google Scholar
Reise, D., 1973. Clave para la determinación de los cráneos de marsupiales y roedores chilenos. Gayana 27, 120.Google Scholar
Reise, D., Venegas, W., 1987. Catalogue of records, localities and biotopes from research work on small mammals in Chile and Argentina—Catálogo de registros, localidades y biotopes del trabajo de investigación acerca de los pequeños mamíferos de Chile y Argentina. Gayana, Zoología 51, 103130.Google Scholar
Roth, S., 1899. Descripción de los restos encontrados en la caverna de Ultima Esperanza. Revista del Museo de La Plata 9, 421453.Google Scholar
Sagredo, E.A., Moreno, P.I., Villa-Martínez, R., Kaplan, M.R., 2007. Glacial fluctuations of the Seno Última Esperanza piedmont lobe during the Last Glacial-interglacial Transition, SW Patagonia. In: XVII INQUA Congress (Cairns), The Tropics: Heat Engine of the Quaternary. Quaternary International 167168, 360.Google Scholar
Sagredo, E.A., Moreno, P.I., Villa-Martínez, R., Kaplan, M.R., Kubik, P.W., Stern, C.R., 2011. Fluctuations of the Última Esperanza ice lobe (52°S), Chilean Patagonia, during the last glacial maximum and termination 1. Geomorphology 125, 92108.CrossRefGoogle Scholar
Salmi, M., 1955. Additional information on the findings in the Mylodon Cave at Ultima Esperanza. Acta Geographica Helsinkim 19, 314333.Google Scholar
Saxon, E.C., 1976. La prehistoria de Fuego-Patagonia: colonización de un hábitat marginal. Anales del Instituto de la Patagonia 7, 6373.Google Scholar
Saxon, E.C., 1979. Natural prehistory: The archaeology of Fuego-Patagonian ecology. Quaternaria 21, 329356.Google Scholar
Schäbitz, F., 1991. Holocene vegetation and vlimate [sic] in southern Santa Cruz, Argentina. Bamberger Geographische Schriften 11, 235244.Google Scholar
Simonetti, J.A., Rau, J.R., 1989. Roedores del Holoceno Temprano de la Cueva del Milodón, Magallanes, Chile. Noticiario Mensual del Museo Nacional de Historia Natural de Chile 315, 35.Google Scholar
Sottile, G.D., Bamonte, F.P., Mancini, M.V., Bianchi, M.M., 2012. Insights into Holocene vegetation and climate changes at the southeastern side of the Andes: Nothofagus forest and Patagonian steppe fire records. The Holocene 22, 13091322.CrossRefGoogle Scholar
Stern, C.R., 2008. Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bulletin of Volcanology 70, 435454.CrossRefGoogle Scholar
Stern, C.R., Moreno, P.I., Villa-Martínez, R., Sagredo, E.A., Prieto, A., Labarca, R., 2011. Evolution of ice-dammed proglacial lakes in Última Esperanza, Chile: implications from the late-glacial R1 eruption of Reclús volcano, Andean Austral Volcanic Zone. Andean Geology 38, 8297.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB 3.0 14C Age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Tammone, M., Hajduk, A., Arias, P., Teta, P., Lacey, E., Pardiñas, U.F.J., 2014. Last Glacial Maximum environments in northwestern Patagonia revealed by fossil small mammals. Quaternary Research 82, 198208.CrossRefGoogle Scholar
Tammone, M., Lacey, E., Pardiñas, U.F.J., 2020. Dramatic recent changes in small mammal assemblages from Northern Patagonia: A caution for paleoenvironmental reconstructions. The Holocene 30, 15791590.CrossRefGoogle Scholar
Teta, P., D'Elía, G., 2016. Taxonomical notes on the long-clawed mole mice of the genus Geoxus (Cricetidae), with the description of a new species from an oceanic island of southern Chile. Hystrix, the Italian Journal of Mammalogy 27, 194203. https://doi.org/10.4404/hystrix-27.2-11996.Google Scholar
Texera, W.A., 1972. Distribución y diversidad de mamíferos y aves en la provincia de Magallanes. Anales del Instituto de la Patagonia 3, 171200.Google Scholar
Texera, W.A., 1973. Distribución y diversidad de mamíferos y aves en la provincia de Magallanes. IV. Zoogeografía de mamíferos nativos terrestres. Anales del Instituto de la Patagonia 4, 321333.Google Scholar
Tipper, J.C., 1979. Rarefaction and rarefiction—the use and abuse of a method in paleoecology. Paleobiology 5, 423434.CrossRefGoogle Scholar
Todisco, D., Rodet, J., Nehme, C., Martin, F., Borrero, L. A., 2016. Les cavités du Cerro Benitez (Patagonie, Chili)—Hypothèses génétiques glacio-karstiques. Karstologia 67, 3142.Google Scholar
Trejo, A., Figueroa, R.A., Alvarado, S., 2006. Forest-specialist raptors of the temperate forests of southern South America: a review. Revista Brasileira de Ornitologia 14, 317330.Google Scholar
Trejo, A., Kun, M., Sahores, M., Seijas, S., 2005. Diet overlap and prey size of two owls in the forest-steppe ecotone of southern Argentina. Ornitología Neotropical 16, 539546.Google Scholar
Trejo, A., Ojeda, V., 2002. Identificación de egagrópilas de aves rapaces en ambientes boscosos y ecotonales del noroeste de la Patagonia Argentina. Ornitologia Neotropical 13, 313317.Google Scholar
Villa-Martínez, R., Moreno, P.I., 2007. Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quaternary Research 68, 400409.CrossRefGoogle Scholar
Villavicencio, N., Lindsey, E.L., Martin, F.M., Borrero, L.A., Moreno, P.I., Marshall, C.R., Barnosky, A.D., 2016. Combination of humans, climate, and vegetation change triggered late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39, 125140.CrossRefGoogle Scholar
Walker, M., Head, M.J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L.C., Fisher, D.A., et al. , 2018. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes 41, 213223.CrossRefGoogle Scholar
Yáñez, J., Rau, J., Jaksic, F., 1978. Estudio comparativo de la alimentación de Bubo virginianus (Strigidae) en dos regiones de Chile. Anales del Museo de Historia Natural, Valparaíso 11, 97104.Google Scholar
Zolitschka, B., Fey, M., Janssen, S., Maidana, N., Mayr, C., Wulf, S., Haberzettl, T., et al. , 2019. Southern Hemispheric Westerlies control sedimentary processes of Laguna Azul (south-eastern Patagonia, Argentina). The Holocene 29, 403420.CrossRefGoogle Scholar
Supplementary material: File

Pardiñas et al. supplementary material

Pardiñas et al. supplementary material 1

Download Pardiñas et al. supplementary material(File)
File 282.6 KB
Supplementary material: File

Pardiñas et al. supplementary material

Pardiñas et al. supplementary material 2

Download Pardiñas et al. supplementary material(File)
File 13.9 KB
Supplementary material: File

Pardiñas et al. supplementary material

Pardiñas et al. supplementary material 3

Download Pardiñas et al. supplementary material(File)
File 35.8 KB
Supplementary material: File

Pardiñas et al. supplementary material

Pardiñas et al. supplementary material 4

Download Pardiñas et al. supplementary material(File)
File 179.2 KB
Supplementary material: File

Pardiñas et al. supplementary material

Pardiñas et al. supplementary material 5

Download Pardiñas et al. supplementary material(File)
File 129.5 KB