Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T06:06:49.110Z Has data issue: false hasContentIssue false

Geochemical composition of Tanzanian shelf sediments indicates Holocene climatic and sea-level changes

Published online by Cambridge University Press:  05 April 2017

Xiting Liu*
Affiliation:
Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China MARUM–Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, D-28359 Bremen, Germany
Rebecca Rendle-Bühring
Affiliation:
MARUM–Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, D-28359 Bremen, Germany
Rüdiger Henrich
Affiliation:
MARUM–Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, D-28359 Bremen, Germany
*
*Corresponding author at: Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. E-mail address: liuxtcn@gmail.com (X. Liu).

Abstract

We present a high-resolution geochemical and grain-size record from a Holocene sediment core off the Pangani River mouth, Tanzania. Elemental ratios between biogenic elements and Al (i.e., Ca/Al, Mg/Al, and Sr/Al) are mainly influenced by terrigenous dilution on carbonate concentration and/or limitation of carbonate production as a result of variations in the supply of fine-grained terrigenous sediments of the Pangani River. Such elemental ratios increased significantly at the end of the mid-Holocene between 5 and 3.5 ka, demonstrating a gradual transition from the humid early and mid-Holocene to the arid late Holocene in East Africa. Among the elemental ratios between terrigenous elements and Al, Si/Al and K/Al ratios correlate to grain-size variation, indicating a change in sedimentation regime. Fe/Al and Ti/Al ratios show that the sediment source area has shifted from the terrestrial volcanic region of Tanzania (Fe, Ti rich) to the coastal and inner-shelf regions (Fe, Ti poor) around 7.5 ka, in response to arid climate and high sea level. Our geochemical results correspond with a sea-surface temperature record derived from the same sediment core, indicating that the end of the East African Humid Period could have been gradual and related to the cooling water in the western Indian Ocean.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adegbie, A.T., Schneider, R.R., Röhl, U., Wefer, G., 2003. Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeography, Palaeoclimatology, Palaeoecology 197, 323333.Google Scholar
Arz, H.W., Pätzold, J., Wefer, G., 1998. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quaternary Research 50, 157166.Google Scholar
Barker, P.A., Hurrell, E.R., Leng, M.J., Wolff, C., Cocquyt, C., Sloane, H.J., Verschuren, D., 2011. Seasonality in equatorial climate over the past 25 k.y. revealed by oxygen isotope records from Mount Kilimanjaro. Geology 39, 11111114.Google Scholar
Bauernhofer, A., Hauzenberger, C., Wallbrecher, E., Muhongo, S., Hoinkes, G., Mogessie, A., Opiyo-Akech, N., Tenczer, V., 2009. Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African subduction. International Journal of Earth Sciences 98, 18091834.Google Scholar
Bayon, G., Dennielou, B., Etoubleau, J., Ponzevera, E., Toucanne, S., Bermell, S., 2012. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 12191222.Google Scholar
Beal, L.M., Hormann, V., Lumpkin, R., Foltz, G.R., 2013. The response of the surface circulation of the Arabian Sea to monsoonal forcing. Journal of Physical Oceanography 43, 20082022.Google Scholar
Berke, M.A., Johnson, T.C., Werne, J.P., Grice, K., Schouten, S., Damste, J.S.S., 2012. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. Quaternary Science Reviews 55, 5974.CrossRefGoogle Scholar
Birch, H., Coxall, H.K., Pearson, P.N., Kroon, D., O’Regan, M., 2013. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Marine Micropaleontology 101, 127145.Google Scholar
Blanchet, C.L., Contoux, C., Leduc, G., 2015. Runoff and precipitation dynamics in the Blue and White Nile catchments during the mid-Holocene: a data-model comparison. Quaternary Science Reviews 130, 222230.Google Scholar
Blanchet, C.L., Tjallingii, R., Frank, M., Lorenzen, J., Reitz, A., Brown, K., Feseker, T., Brückmann, W., 2013. High-and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan. Earth and Planetary Science Letters 364, 98110.Google Scholar
Bloemsma, M.R., Zabel, M., Stuut, J.B.W., Tjallingii, R., Collins, J.A., Weltje, G., 2012. Modelling the joint variability of grain size and chemical composition in sediments. Sedimentary Geology 280, 135148.Google Scholar
Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., Dutra-Maia, P., 2011. Grain size control of river suspended sediment geochemistry: clues from Amazon River depth profiles. Geochemistry, Geophysics, Geosystems 12, Q03008.CrossRefGoogle Scholar
Bouimetarhan, I., Dupont, L., Kuhlmann, H., Patzold, J., Prange, M., Schefuss, E., Zonneveld, K., 2015. Northern Hemisphere control of deglacial vegetation changes in the Rufiji uplands (Tanzania). Climate of the Past 11, 751764.Google Scholar
Bozzano, G., Kuhlmann, H., Alonso, B., 2002. Storminess control over African dust input to the Moroccan Atlantic margin (NW Africa) at the time of maxima boreal summer insolation: a record of the last 220 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 155168.Google Scholar
Calvert, S.E., Pedersen, T.F., 2007. Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel, C., De Vernal, A. (Eds.), Developments in Marine Geology. Vol. 1, Proxies in Late Cenozoic Paleoceanography. Amsterdam: Elsevier. pp. 567644.Google Scholar
Camoin, G.F., Montaggioni, L.F., Braithwaite, C.J.R., 2004. Late glacial to post glacial sea levels in the Western Indian Ocean. Marine Geology 206, 119146.Google Scholar
Cantalejo, B., Pickering, K.T., 2014. Climate forcing of fine-grained deep-marine systems in an active tectonic setting: Middle Eocene, Ainsa Basin, Spanish Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology 410, 351371.Google Scholar
Castañeda, I.S., Schouten, S., Pätzold, J., Lucassen, F., Kasemann, S., Kuhlmann, H., Schefuß, E., 2016. Hydroclimate variability in the Nile River Basin during the past 28,000 years. Earth and Planetary Science Letters 438, 4756.Google Scholar
Clift, P.D., Wan, S.M., Blusztajn, J., 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth Science Reviews 130, 86102.Google Scholar
Costa, K., Russell, J., Konecky, B., Lamb, H., 2014. Isotopic reconstruction of the African Humid Period and Congo Air Boundary migration at Lake Tana, Ethiopia. Quaternary Science Reviews 83, 5867.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., 2000. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 347361.Google Scholar
deMenocal, P.B., Tierney, J.E., 2012. Green Sahara: African humid periods paced by Earth’s orbital changes. Nature Education Knowledge 3, 12.Google Scholar
Garcin, Y., Melnick, D., Strecker, M.R., Olago, D., Tiercelin, J.-J., 2012. East African mid-Holocene wet–dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift. Earth and Planetary Science Letters 331–332, 322334.Google Scholar
Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., Villa, I.M., 2014. Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology 366, 6174.Google Scholar
Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189211.Google Scholar
Govin, A., Holzwarth, U., Heslop, D., Keeling, L.F., Zabel, M., Mulitza, S., Collins, J.A., Chiessi, C.M., 2012. Distribution of major elements in Atlantic surface sediments (36°N–49°S): imprint of terrigenous input and continental weathering. Geochemistry, Geophysics, Geosystems 13, Q01013.CrossRefGoogle Scholar
Grumet, N.S., Guilderson, T.P., Dunbar, R.B., 2002. Meridional transport in the Indian Ocean traced by coral radiocarbon. Journal of Marine Research 60, 725742.Google Scholar
Hellar-Kihampa, H., Potgieter-Vermaak, S., Van Meel, K., Rotondo, G.G., Kishimba, M., Van Grieken, R., 2012. Elemental composition of bottom-sediments from Pangani River basin, Tanzania: lithogenic and anthropogenic sources. Toxicological and Environmental Chemistry 94, 525544.Google Scholar
Jung, S.J.A., Davies, G.R., Ganssen, G.M., Kroon, D., 2004. Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth and Planetary Science Letters 221, 2737.Google Scholar
Junginger, A., Roller, S., Olaka, L.A., Trauth, M.H., 2014. The effects of solar irradiation changes on the migration of the Congo Air Boundary and water levels of paleo-Lake Suguta, Northern Kenya Rift, during the African Humid Period (15–5ka BP). Palaeogeography, Palaeoclimatology, Palaeoecology 396, 116.Google Scholar
Just, J., Schefuss, E., Kuhlmann, H., Stuut, J.B.W., Pätzold, J., 2014. Climate induced sub-basin source-area shifts of Zambezi River sediments over the past 17 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 410, 190199.Google Scholar
Kapilima, S., 2004. Tectonic and sedimentary evolution of the coastal basin of Tanzania during the Mesozoic times. Tanzania Journal of Science 29, 116.Google Scholar
Kashaigili, J., 2010. Assessment of Groundwater Availability and Its Current and Potential Use and Impacts in Tanzania. Report prepared for the International Water Management Institute. Sokoine University of Agriculture, Morogoro, Tanzania.Google Scholar
Komakech, H., van Koppen, B., Mahoo, H., van der Zaag, P., 2011. Pangani River Basin over time and space: on the interface of local and basin level responses. Agricultural Water Management 98, 17401751.Google Scholar
Krom, M.D., Stanley, J.D., Cliff, R.A., Woodward, J.C., 2002. Nile River sediment fluctuations over the past 7000 yr and their key role in sapropel development. Geology 30, 7174.Google Scholar
Kröpelin, S., Verschuren, D., Lézine, A.-M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J.-P., et al., 2008. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320, 765768.Google Scholar
Kuhlmann, H., Meggers, H., Freudenthal, T., Wefer, G., 2004. The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene. Geophysical Research Letters 31, L22204.CrossRefGoogle Scholar
Kuhnert, H., Kuhlmann, H., Mohtadi, M., Meggers, H., Baumann, K.H., Pätzold, J., 2014. Holocene tropical western Indian Ocean sea surface temperatures in covariation with climatic changes in the Indonesian region. Paleoceanography 29, 423437.CrossRefGoogle Scholar
Liu, X.T, Rendle-Bühring, R., Kuhlmann, H., Li, A., 2017. Two phases of the Holocene East African Humid Period: inferred from a high-resolution geochemical record off Tanzania. Earth and Planetary Science Letters 460, 123134.Google Scholar
Liu, X.T., Rendle-Bühring, R., Meyer, I., Henrich, R., 2016. Holocene shelf sedimentation patterns off equatorial East Africa constrained by climatic and sea-level changes. Sedimentary Geology 331, 111.Google Scholar
Lupker, M., France-Lanord, C., Galy, V., Lavé, J., Kudrass, H., 2013. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth and Planetary Science Letters 365, 243252.Google Scholar
McClanahan, T.R., 1988. Seasonality in East Africa’s coastal waters. Marine Ecology Progress Series 44, 191199.Google Scholar
Meyer, I., Davies, G.R., Stuut, J.B.W., 2011. Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: an example from deep-sea sediments offshore NW Africa. Geochemistry, Geophysics, Geosystems 12, Q03005.Google Scholar
Morrissey, A., Scholz, C.A., 2014. Paleohydrology of Lake Turkana and its influence on the Nile River system. Palaeogeography, Palaeoclimatology, Palaeoecology 403, 88100.Google Scholar
Nicholson, S., 1996. A review of climate dynamics and climate variability in eastern Africa. In Johnson, T.C., Odada, E.O. (Eds.), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Amsterdam: Gordon and Breach. pp. 2556.Google Scholar
Pérez-Cruz, L., 2013. Hydrological changes and paleoproductivity in the Gulf of California during middle and late Holocene and their relationship with ITCZ and North American Monsoon variability. Quaternary Research 79, 138151.Google Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., Röhl, U., 2000. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 19471951.Google Scholar
Plewa, K., Meggers, H., Kuhlmann, H., Freudenthal, T., Zabel, M., Kasten, S., 2012. Geochemical distribution patterns as indicators for productivity and terrigenous input off NW Africa. Deep Sea Research Part I: Oceanographic Research Papers 66, 5166.Google Scholar
Revel, M., Colin, C., Bernasconi, S., Combourieu-Nebout, N., Ducassou, E., Grousset, F.E., Rolland, Y., et al., 2014. 21,000 Years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Regional Environmental Change 14, 16851696.Google Scholar
Savoye, B., Ridderinkhof, H., Pätzold, J., Schneider, R., 2013. Western Indian Ocean Climate and Sedimentation: Cruise No. M75, December 29, 2007–April 08, 2008, Port Louis (Mauritius)–Cape Town (South Africa). METEOR-Berichte, M75. DFG-Senatskommission für Ozeanographie, Bremen, Germany.Google Scholar
Schefuß, E., Schouten, S., Schneider, R.R., 2005. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 10031006.Google Scholar
Schramm, R., Heckel, J., 1998. Fast analysis of traces and major elements with ED(P)XRF using polarized X-rays: TURBOQUANT. Journal de Physique IV 8, 335342.Google Scholar
Schulte, S., Bard, E., 2003. Past changes in biologically mediated dissolution of calcite above the chemical lysocline recorded in Indian Ocean sediments. Quaternary Science Reviews 22, 17571770.Google Scholar
Semkiwa, P.M., Hester, B., 2005. Opportunities for Mineral Resource Development: Tanzania. 4th ed. Ministry of Energy and Minerals, Republic of Tanzania, Dar es Salaam.Google Scholar
Shaghude, Y.W., 2007. Shore morphology and sediment characteristics south of Pangani River, coastal Tanzania. Western Indian Ocean Journal of Marine Science 3, 93104.Google Scholar
Sommer, H., Kröner, A., Hauzenberger, C., Muhongo, S., Wingate, M.T.D., 2003. Metamorphic petrology and zircon geochronology of high-grade rocks from the central Mozambique Belt of Tanzania: crustal recycling of Archean and Palaeoproterozoic material during the Pan-African orogeny. Journal of Metamorphic Geology 21, 915934.Google Scholar
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., Yim, W.W.S., 2002. Marine reservoir corrections for the Indian Ocean and southeast Asia. Radiocarbon 44, 167180.Google Scholar
Stolz, K., Baumann, K., Mersmeyer, H., 2015. Extant coccolithophores from the western equatorial Indian Ocean off Tanzania and coccolith distribution in surface sediments. Micropaleontology 61, 473488.Google Scholar
Stuut, J.-B.W., Temmesfeld, F., De Deckker, P., 2014. A 550 ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quaternary Science Reviews 83, 8394.Google Scholar
Tierney, J.E., deMenocal, P.B., 2013. Abrupt shifts in Horn of Africa hydroclimate since the Last Glacial Maximum. Science 342, 843846.Google Scholar
Tierney, J.E., Lewis, S.C., Cook, B.I., LeGrande, A.N., Schmidt, G.A., 2011a. Model, proxy and isotopic perspectives on the East African Humid Period. Earth and Planetary Science Letters 307, 103112.Google Scholar
Tierney, J.E., Russell, J.M., Damste, J.S.S., Huang, Y.S., Verschuren, D., 2011b. Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary. Quaternary Science Reviews 30, 798807.CrossRefGoogle Scholar
Tierney, J.E., Russell, J.M., Huang, Y., Damste, J.S., Hopmans, E.C., Cohen, A.S., 2008. Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252255.Google Scholar
van der Lubbe, J.J.L., Tjallingii, R., Prins, M.A., Brummer, G.-J.A., Jung, S.J.A., Kroon, D., Schneider, R.R., 2014. Sedimentation patterns off the Zambezi River over the last 20,000 years. Marine Geology 355, 189201.Google Scholar
Weltje, G.J., Tjallingii, R., 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth and Planetary Science Letters 274, 423438.Google Scholar
Woodroffe, S.A., Long, A.J., Punwong, P., Selby, K., Bryant, C.L., Marchant, R., 2015. Radiocarbon dating of mangrove sediments to constrain Holocene relative sea-level change on Zanzibar in the southwest Indian Ocean. Holocene 25, 820831.Google Scholar
Yarincik, K.M., Murray, R.W., Peterson, L.C., 2000. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: results from Al/Ti and K/Al. Paleoceanography 15, 210228.Google Scholar
Zabel, M., Schneider, R.R., Wagner, T., Adegbie, A.T., de Vries, U., Kolonic, S., 2001. Late Quaternary climate changes in central Africa as inferred from terrigenous input to the Niger fan. Quaternary Research 56, 207217.Google Scholar
Ziegler, M., Simon, M.H., Hall, I.R., Barker, S., Stringer, C., Zahn, R., 2013. Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications 4, 1905.CrossRefGoogle ScholarPubMed
Zinke, J., Reijmer, J.J.G., Thomassin, B.A., Dullo, W.C., Grootes, P.M., Erlenkeuser, H., 2003. Postglacial flooding history of Mayotte lagoon (Comoro Archipelago, southwest Indian Ocean). Marine Geology 194, 181196.Google Scholar