Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T12:54:49.458Z Has data issue: false hasContentIssue false

Geochronological Potential of Isoleucine Epimerization in Calcite Speleothems

Published online by Cambridge University Press:  20 January 2017

Stein-Erik Lauritzen
Affiliation:
Department of Geology, University of Bergen, Allégaten 41, N-5007 Bergell, Norway
John Erik Haugen
Affiliation:
Norwegian Institute for Air Research, Elvegaten 52, P.O. Box 64, N-2001 Lillestrøm, Norway
Reidar Løvlie
Affiliation:
Department of Solid Earth Physic, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
Helge Gilje-Nielsen
Affiliation:
Department of Solid Earth Physic, University of Bergen, Allégaten 41, N-5007 Bergen, Norway

Abstract

The extent of isoleucine epimerization in a calcite speleothem was determined to evaluate the amino acid racemization method in abiotic calcite. A 5.5-cm-thick flowstone slab from Hamarnesgrotta, northern Norway, was analyzed for amino acid concentration, composition, and isoleucine epimerization at 26 levels through the sequence. U-series dates provide an independent chronologic control. Epimerization increases monotonically with stratigraphic depth and linearily with U-series age, independent of amino acid concentrations. The rate of epimerization is calibrated against the U-series dates, and extrapolation into lower strata beyond the U-series limit yields absolute age estimates that are consistent with paleomagnetic data from the same speleothem. The results suggest that, if adequately calibrated, amino acid dating is applicable to speleothem material reaching time spans beyond the range of conventional dating methods. Amino acids in the speleothem were probably derived from surface soils and are associated with brown humic stains in the calcite.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, T. C. (1983). Growth mechanisms of speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arctic and Alpine Research 15, 523536.Google Scholar
Bastin, B. (1978). L’analyse pollinique des stalagmites: Une nouvelle possibility d’approche des fluctuations climatiques du quatemaire. Annales de la Societe Geologique de Belgue 101, 1319.Google Scholar
Berggren, W. A. Burcle, L. H. Cita, M. B. Cooke, H. B. S. Funnell, B. M. Gartner, S. Hays, J. D. Kennett, J. P. Opdyke, N. D. Pastouret, L. Schackleton, N. J.. and Takayange, Y. (1980). Toward a quaternary time scale. Quaternary Research 13, 277302.Google Scholar
Carter, P. W. (1978). Adsorption of amino acid containing organic matter by calcite and quartz. Geochimica Cosmochitnica Acta 42, 12391242.CrossRefGoogle Scholar
Carter, P. W., and Mitterer, R. M. (1978). Amino acid composition of organic matter associated with carbonate and non-carbonate sediments. Geochimica Cosmochimica Acta 42, 12311238.Google Scholar
Dreybrodt, W. (1988). “Processes in Karst Systems. Physics, Chemistry and Geology” Springer-Verlag, Berlin.Google Scholar
Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of The Royal Society of London 217, 295305.CrossRefGoogle Scholar
Folk, R., and Assereto, R. (1976). Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlsbad Caverns, New Mexico. Journal of Sedimentary Petrology 56, 486496.Google Scholar
Ford, D. C., and Williams, R W. (1989). “Karst Geomorphology and Hydrology” Unwin Hyman, London.Google Scholar
Ford, D. C. Harmon, R. S. Schwarcz, H. R Wigley, T. M. L., and Thompson, R (1976). Geo-hydrologic and thermometric observations in the vicinity of the Columbia Icefield, Alberta and British Columbia, Canada. Journal of Glaciology 16, 219230.CrossRefGoogle Scholar
Gascoyne, M. Schwarcz, H. P., and Ford, D. C. (1983). UraniumSeries Ages of Speleothem from Northwest England Correlation with Quaternary Climate. Philosophical Transactions of The Royal Society of London Series B 301, 143164.Google Scholar
Gillot, P. Y. Labeyre, J. Laj, C. Valladas, G. Guerin, G. Poeau, G., and Delibrias, G. (1979). Age of Laschamp paleomagnetic excursion revisited. Earth and Planetary Science Letters 42, 444450.CrossRefGoogle Scholar
Gordon, D. Smart, P. L. Ford, D. C. Andrews, J. N. Atkinson, T. C. Rowe, P. J., and Christopher, N. S. J. (1989). Dating of late Pleistocene interglacial and interstadial periods in the United Kingdom from speleothem growth frequency. Quaternary Research 31, 1426.CrossRefGoogle Scholar
Griin, R. (1989). Electron spin resonance (ESR) dating. Quaternary International 1, 65109.CrossRefGoogle Scholar
Haberstroh, P. R., and Karl, D. M. (1989). Dissolved free amino acids in hydrothermal vent habitats of Gyamas Basin. Geochimica Cosmochimica Acta 53, 29372945.CrossRefGoogle Scholar
Ivanovich, M., and Harmon, R. S. (1982). “‘Uranium Series Disequilibrium. Applications to Environmental Problems,” Clarendon, Oxford.Google Scholar
Kemp, A. L. W. (1973). The release of amino acids from lake sediment humic substances by the proteolytic enzyme pronase. In “Advances in Organic Geochemistry” (Tissot, B. and Bienner, F, Eds.), pp. 715723. Edition Technip, Paris.Google Scholar
Kemp, A. L. W., and Mudrochova, A. (1973). The distribution and nature of amino acids and other nitrogen-containing compounds in Lake Ontario surface sediments. Geochimica Cosmochimica Acta 37, 21912266.CrossRefGoogle Scholar
Lauritzen, S. E. Ford, D. C., and Schwarcz, H. P. (1986). Humic substances in speleothem matrix-Paleoclimatic significance. Proceedings, 9th International Speleological Congress. Barcelona 1, 7779.Google Scholar
Lauritzen, S. E. L0vlie, R. Moe, D., 0stbye, E. (1990). Paleoclimate deduced from a multidisciplinary study of a half-million-year-old stalagmite from Rana, northern Norway. Quaternary Research 34, 306316.CrossRefGoogle Scholar
Levi, S. Audunsson, H. Duncan, R. A. Kristjansson, L. Gillot, P. Y., and Jakobsson, S. P. (1990). Late Pleistocene paleomagnetic excursion in Icelandic lavas: Confirmatuon of the Laschamp excursion. Earth and Planetary Science Letters 96, 443457.Google Scholar
Li, W. X. Lundberg, J. Dickin, A. P. Ford, D. C. Schwarcz, H. P. McNutt, R., and Williams, D. (1989). High-precision mass spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature 339, 534536.Google Scholar
McCoy, W. D. (1987). The precision of amino acid geochronology and paleothermometry. Quaternary Science Reviews 6, 4354.Google Scholar
Miller, G. H. (1980). Amino acid geochronology: Integrity of the carbonate matrix and potential of molluscan fossils. In “Biogeochemis-try of Amino Acids” (Hare, P. E. Hoering, T. C., and King, J., Eds.), pp. 415443. Wiley, New York.Google Scholar
Miller, G. H. (1985). Aminostratigraphy of Baffin Island shellbearing deposits. In “Quaternary Environments: Baffin Island, Baffin Bay and West Greenland” (Andrews, J. H. T., Ed.), pp. 394427. Allen Unwin, London.Google Scholar
Miller, G. H. Sejrup, H. P. Mangerud, J., and Andersen, B. G. (1983). Amino acid ratios in Quaternary molluscs and foramnifera from Western Norway: Correlation, geochronology and paleotemperature estimates. Boreas 12, 107124.CrossRefGoogle Scholar
Milligan, R. J., and Boila, L. P. (1980). Effect of ammonium hydroxyde concentration on the recoveries of amino acids during preparation for gas-liquid chromatography. Journal of Chromatography 202, 283286.Google Scholar
Mitterer, R. M. (1975). Ages and diagentic temperatures of Pleistocene deposits in Florida based on isoleucine epimerization in Mercenaria. Earth and Planetary Science Letters 28, 275282.CrossRefGoogle Scholar
Mitterer, R. M., and Kriausakul, N. (1984). Comparison of rates and degrees of isoleucine epimerization in dipeptides and tripeptides. Organic Geochemistry 7, 9198.CrossRefGoogle Scholar
Mitterer, R. M., and Kriausakul, N. (1989). Calculation of amino acid racemization ages based on apparent parabolic kinetics. Quaternary Science Reviews 8, 353357.CrossRefGoogle Scholar
Muller, P. J. (1984). Isoleucine epimerization in Quaternary plantktonic foraminifera. Effect of diagenetic hydrolysis and leaching, and Atlantic-Pacific intercore relations. Meieorologische Forschungsergebmsse 38, 2547.Google Scholar
Rafalska, J. K. Engel, M. H., and Lainer, W. P. (1991). Retardation of racemization rates of amino acids incorporated into melanoidins. Geochimica Cosmochimica Acta 55, 36693675.Google Scholar
Schwarcz, H. P. (1980). Absolute age determinations of archaeological sites by uranium dating of travertines. Archaeometry 22, 324.CrossRefGoogle Scholar
Schwarcz, H. P. (1986). Geochronology and isotope geochemistry in speleothems. In “Handbook of Environmental Isotope Geochemis-try” (Fritz, P. and Fontcs, J., Eds.), pp. 271303. Elsevier, Amsterdam.Google Scholar
Schwarcz, H. P. Harmon, R. S. Thompson, P., and Ford, D. C. (1976). Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance. Geochimica Cosmochimica Acta 40, 657665.Google Scholar
Shopov, Y. Dermendjiev, V., and Buykliev, G. (1989). Investigation on the old variations of the climate and solar activity by a new method— LLMZA of cave flowstone from Bulgaria. Proceedings, 10th International Speleological Congress, Budapest 1, 9597.Google Scholar
Spitzy, A. (1982), Amino acids and sugars in deep and shallow groundwater from the Hamburg region. Mitteilungen von Geologische und Paldontologische Institut. Universitdt Hamburg 52, 743748.Google Scholar
Stevenson, F. J. (1982). “Humus Chemistry.” Wiley Interscience, New York.Google Scholar
Szabo, B. J. Miller, G. H. Andrews, J. T., and Stuiver, M. (1981). Comparison of Uranium-series, radiocarbon, and amino acid data from marine molluscs, Baffin Island, arctic Canada. Geology 9, 451457.Google Scholar
Tucholka, P. Fontugne, M. Guichard, F., and Pateme, M. (1987). The Blake magnetic polarity episode in cores from the Mediterranean Sea. Earth and Planetary Science Letters 86, 320326.Google Scholar
Wigley, T. M. L., and Brown, M. C. (1976). The Physics of Caves. In“The Science of Speleology” (Ford, T. D. and Cullingford, C. H. D., Eds.), pp. 329358. Academic Press, London.Google Scholar
Williams, K. M., and Smith, G. G. (1977). A critical evaluation of the application of amino acid racemization to geochronology and geo-thermometry. Origins of Life 8, 144.Google Scholar