Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:31:13.591Z Has data issue: false hasContentIssue false

Glacial equilibrium line–based relationship for paleoclimate reconstructions (Sierra Nevada, USA)

Published online by Cambridge University Press:  27 April 2022

Etienne Legrain
Affiliation:
CRPG, CNRS, Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France
Pierre-Henri Blard*
Affiliation:
CRPG, CNRS, Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France Laboratoire de glaciologie, DGES-IGEOS, Université Libre de Bruxelles, 1050 Brussels, Belgium
Julien Charreau
Affiliation:
CRPG, CNRS, Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France
*
*Corresponding author at E-mail address:blard@crpg.cnrs-nancy.fr (P.-H. Blard)

Abstract

We use PRISM climatic data (1981–2010) and Landsat images (2012–2013) to establish an empirical relationship linking annual temperature and precipitation to the equilibrium line altitude (ELA) of glaciers in the Sierra Nevada (36–41°N, California, USA). For this, we determined the present-day ELAs of 57 glaciers and the local 0°C isotherms elevation Iso0, averaged over the 1981–2010 period. The difference, for each glacier, is Y, the normalized snowline altitude (Y = ELA – Iso0). We then empirically calibrated a logarithmic relationship between this normalized snowline altitude and mean annual precipitation using data from partially covered glaciers. Our calibration is statistically distinct from that previously established for the tropical and midlatitude Andes (Fox and Bloom [1994], Journal of Geography (Chigaku Zasshi), 103, 867–885; Condom et al. [2007], Global and Planetary Change, 59, 189–202). This new relationship for North America is an easy-to-use tool to permit paleoclimatic reconstructions from paleo-ELAs. For a specific paleoglacial site, paleotemperature can be computed knowing the paleoprecipitation range, and vice versa. We also performed a test showing that, if precipitation is well known, the uncertainty associated with paleotemperature is about 1°C (1σ).

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammann, C., Jenny, B., Kammer, K., Messerli, B., 2001. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18–29 S). Paleogeography, Paleoclimatology, Paleoecology 172, 313326.CrossRefGoogle Scholar
Benn, D.I., Lehmkuhl, F., 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65, 1529.CrossRefGoogle Scholar
Blard, P.H., Lavé, J., Pik, R., Wagnon, P., Bourlès, D., 2007. Persistence of full glacial conditions in the central Pacific until 15,000 years ago. Nature 449, 591.CrossRefGoogle ScholarPubMed
Blard, P.H., Wagnon, P., Lavé, J., Soruco, A., Sicart, J.E., Francou, B., 2011. Degree-day melt models for paleoclimate reconstruction from tropical glaciers: calibration from mass balance and meteorological data of the Zongo glacier (Bolivia, 16° S). Climate of the Past Discussions 7, 21192158.Google Scholar
Braithwaite, R.J., 1995. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. Journal of Glaciology 41, 153160.CrossRefGoogle Scholar
Carrasco, J.F., Casassa, G., Quintana, J., 2005. Changes of the 0° C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century/Changements de l'isotherme 0° C et de la ligne d’équilibre des neiges dans le Chili central durant le dernier quart du 20ème siècle. Hydrological Sciences Journal 50(6), 948.CrossRefGoogle Scholar
Charlesworth, J.K., 1957. The Quaternary Era with Special Reference to Its Glaciation. Vol. 2. Edward Arnold, London, pp. 5951700.Google Scholar
Clark, D.H., Clark, M.M., Gillespie, A.R., 1994. Debris-covered glaciers in the Sierra Nevada, California, and their implications for snowline reconstructions. Quaternary Research 41, 139153.CrossRefGoogle Scholar
Condom, T., Coudrain, A., Sicart, J.E., Théry, S., 2007. Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10 N–55 S). Global and Planetary Change 59(1–4), 189202.CrossRefGoogle Scholar
Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., Pasteris, P.P., 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28, 20312064.CrossRefGoogle Scholar
Daly, C., Smith, J.I., Olson, K.V., 2015. Mapping atmospheric moisture climatologies across the conterminous United States. PLoS ONE 10(10), e0141140.CrossRefGoogle ScholarPubMed
Fitzpatrick, N., Radić, V., Menounos, B., 2017. Surface energy balance closure and turbulent flux variableization on a mid-latitude mountain glacier, Purcell Mountains, Canada. Frontiers in Earth Science 5, 67.CrossRefGoogle Scholar
Fountain, A.G., Glenn, B., Basagic, H.J., IV, 2017. The geography of glaciers and perennial snowfields in the American West. Arctic, Antarctic, and Alpine Research 49, 391410.CrossRefGoogle Scholar
Fox, A.N., Bloom, A.L., 1994. Snowline altitude and climate in the Peruvian Andes (5–17 S) at present and during the latest Pleistocene glacial maximum. Journal of Geography (Chigaku Zasshi) 103, 867885.CrossRefGoogle Scholar
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., Funk, M., 2014. A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. Journal of Glaciology 60(224), 11401154.CrossRefGoogle Scholar
Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., Tyler, D., 2002. The national elevation dataset. Photogrammetric Engineering and Remote Sensing 68, 532.Google Scholar
[GLIMS and NSIDC] Global Land Ice Measurements from Space and National Snow and Ice Data Center, 2005 [updated 2018]. Global Land Ice Measurements from Space Glacier Database. Compiled and made available by the international GLIMS community and the National Snow and Ice Data Center, Boulder CO. http://dx.doi.org/10.7265/N5V98602.CrossRefGoogle Scholar
Greene, A.M., Seager, R., Broecker, W.S., 2002. Tropical snowline depression at the Last Glacial Maximum: comparison with proxy records using a single-cell tropical climate model. Journal of Geophysical Research: Atmospheres 107(D8), ACL-4.CrossRefGoogle Scholar
Hock, R., 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology 282(1–4), 104115.CrossRefGoogle Scholar
Martin, L.C., Blard, P.H., Lavé, J., Condom, T., Prémaillon, M., Jomelli, V., Brunstein, D., et al. , 2018. Lake Tauca highstand (Heinrich Stadial 1a) driven by a southward shift of the Bolivian High. Science Advances 4(8), eaar2514.CrossRefGoogle ScholarPubMed
Martini, M.A., Kaplan, M.R., Strelin, J.A., Astini, R.A., Schaefer, J.M., Caffee, M.W., Schwartz, R. 2017. Late Pleistocene glacial fluctuations in Cordillera oriental, subtropical Andes. Quaternary Science Reviews 171, 245259.CrossRefGoogle Scholar
Meier, M.F., 1962. Proposed definitions for glacier mass budget terms. Journal of Glaciology 4(33), 252263.CrossRefGoogle Scholar
Miller, G.H., Bradley, R.S., Andrews, J.T., 1975. The glaciation level and lowest equilibrium line altitude in the high Canadian Arctic: maps and climatic interpretation. Arctic and Alpine Research 7, 155168.CrossRefGoogle Scholar
Moore, J.G., Moring, B.C., 2013. Rangewide glaciation in the Sierra Nevada, California. Geosphere 9, 18041818.CrossRefGoogle Scholar
Oerlemans, J., 2005. Extracting a climate signal from 169 glacier records. Science 308, 675677.CrossRefGoogle ScholarPubMed
Oerlemans, J., 2012. Linear modelling of glacier length fluctuations. Geografiska Annaler: Series A, Physical Geography 94, 183194.CrossRefGoogle Scholar
Ohmura, A., Kasser, P., Funk, M., 1992. Climate at the equilibrium line of glaciers. Journal of Glaciology 38(130), 397411.CrossRefGoogle Scholar
Pandey, G.R., Cayan, D.R., Georgakakos, K.P., 1999. Precipitation structure in the Sierra Nevada of California during winter. Journal of Geophysical Research: Atmospheres 104(D10), 1201912030.CrossRefGoogle Scholar
Plummer, M.A., Phillips, F.M., 2003. A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews 22, 13891406.CrossRefGoogle Scholar
Porter, S.C., 1975. Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research 5, 2747.CrossRefGoogle Scholar
Ramage, J.M., Smith, J.A., Rodbell, D.T., Seltzer, G.O. (2005). Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru. Journal of Quaternary Science 20, 777788.CrossRefGoogle Scholar
Raub, W., Brown, C.S., Post, A., 2006. Inventory of Glaciers in the Sierra Nevada, California. U.S. Geological Survey Open File Report 2006-1239. U.S. Geological Survey, Woods Hole, MA.Google Scholar
Roy, A.J., Lachniet, M.S., 2010. Late quaternary glaciation and equilibrium-line altitudes of the Mayan ice cap, Guatemala, Central America. Quaternary Research 74, 17.CrossRefGoogle Scholar
Rupper, S., Roe, G., Gillespie, A., 2009. Spatial patterns of Holocene glacier advance and retreat in Central Asia. Quaternary Research 72, 337346.CrossRefGoogle Scholar
Sharma, A., Gupta, D., 2014. Derivation of topographic map from elevation data available in Google Earth. Civil Engineering and Urban Planning 1(2), 1421.Google Scholar
Sicart, J.E., Wagnon, P., Ribstein, P., 2005. Atmospheric controls of the heat balance of Zongo Glacier (16 S, Bolivia). Journal of Geophysical Research: Atmospheres 110(D12).CrossRefGoogle Scholar
Stansell, N.D., Polissar, P.J., Abbott, M.B., 2007. Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan Andes. Quaternary Research 67, 115127.Google Scholar
Vázquez-Selem, L., Lachniet, M.S. 2017. The deglaciation of the mountains of Mexico and Central America. Cuadernos de Investigación Geográfica 43, 553570.Google Scholar
Vermeesch, P., 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 14791493.CrossRefGoogle Scholar
Zech, J., Terrizzano, C.M., Garcia Morabito, E., Veit, H., Zech, R., 2017. Timing and extent of late Pleistocene glaciation in the arid Central Andes of Argentina and Chile (22–41 S). Cuadernos de Investigación Geográfica 43, 697718CrossRefGoogle Scholar
Zekollari, H., Huybrechts, P., 2015. On the climate–geometry imbalance, response time and volume–area scaling of an alpine glacier: insights from a 3-D flow model applied to Vadret da Morteratsch, Switzerland. Annals of Glaciology 56(70), 5162.CrossRefGoogle Scholar
Supplementary material: File

Legrain et al. supplementary material

Tables S1-S3 Captions

Download Legrain et al. supplementary material(File)
File 13.7 KB
Supplementary material: File

Legrain et al. supplementary material

Tables S1-S3

Download Legrain et al. supplementary material(File)
File 29.9 KB