Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T08:59:41.128Z Has data issue: false hasContentIssue false

Hanging-wall colluvial cementation along active normal faults

Published online by Cambridge University Press:  13 July 2017

Jack Mason*
Affiliation:
Institute for Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany
Sascha Schneiderwind
Affiliation:
Institute for Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany
Aggelos Pallikarakis
Affiliation:
Laboratory of Mineralogy & Geology, Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
Silke Mechernich
Affiliation:
Institute for Geology and Mineralogy, University of Cologne, Zuelpicherstr. 49b, 50937 Köln, Germany
Ioannis Papanikolaou
Affiliation:
Laboratory of Mineralogy & Geology, Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
Klaus Reicherter
Affiliation:
Institute for Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany
*
*Corresponding author at: Institute for Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany. E-mail address: j.mason@nug.rwth-aachen.de (J. Mason).

Abstract

Many active normal faults throughout the Aegean juxtapose footwall limestone against hanging-wall colluvium. In places, this colluvium becomes cemented and forms large hanging-wall lobes or sheets of varying thickness attached to the bedrock fault. Investigations at the Lastros Fault in eastern Crete allow us to define criteria to distinguish between cemented colluvium and fault cataclasite (tectonic breccia), which is often present at bedrock faults. Macro- and microscopic descriptions of the cemented colluvium show that the colluvium was originally deposited through both rockfalls and debris flows. Stable isotope analyses of oxygen and carbon from 83 samples indicate that cementation then occurred through meteoric fluid flow in the fault zone from springs at localised positions along strike. Palaeotemperature calculations of the parent water from which the calcite cement precipitated are indicative of a climate between 7°C and 10°C colder than Crete’s present average annual temperature. This most likely represents the transition between a glacial and interglacial period in the late Pleistocene. Ground-penetrating radar also indicates that cemented colluvium is present in the hanging-wall subsurface below uncemented colluvium. Using these results, a model for the temporal development of the fault and formation of the cemented colluvium is proposed.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altunel, E., Hancock, P.L., 1993. Active fissuring and faulting in Quaternary travertines at Pumukkale, western Turkey. Zeitschrift für Geomorphologie 94S, 285302.Google Scholar
Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., Huchon, P., 1982. The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics 86, 159196.CrossRefGoogle Scholar
Baker, A., Ito, E., Smart, P., McEwan, R., 1997. Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology 136, 263270.CrossRefGoogle Scholar
Bank of Greece. 2011. The Environmental, Economic, and Social Impacts of Climate Change in Greece. Climate Change Impacts Study Committee. Economic Research Department, Bank of Greece, Athens.Google Scholar
Blikra, L., Nemec, W., 1998. Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology 45, 909959.CrossRefGoogle Scholar
Boenzi, F., Palmentola, G., Sanso, P., Tromba, F., 1982. Aspetti geomorfologici del massiccio dei Leuka Ori nell’isola di Creta (Grecia), con particolare reguardo alle forme carsiche. Geologia Applicata e Idrogeologia 17, 7583.Google Scholar
Brown, S.R., Bruhn, R.L., 1996. Formation of voids and veins during faulting. Journal of Structural Geology 18, 657671.CrossRefGoogle Scholar
Bullock, R., De Paola, N., Holsworth, R., Trabucho-Alexandre, J., 2014. Lithological controls on the deformation mechanisms operating within carbonate-hosted faults during the seismic cycle. Journal of Structural Geology 58, 2242.CrossRefGoogle Scholar
Bussolotto, M., Benedicto, A., Invernizzi, C., Micarelli, L., Plagnes, V., Deiana, G., 2007. Deformation features within an active normal fault zone in carbonate rocks: the Gubbio fault (central Apennines, Italy). Journal of Structural Geology 29, 20172037.CrossRefGoogle Scholar
Caputo, R., Catalano, S., Monaco, C., Romagnoli, R., Tortorici, G., Tortorici, L., 2010. Active faulting on the island of Crete (Greece). Geophysical Journal International 183, 111126.CrossRefGoogle Scholar
Caputo, R., Monaco, C., Tortorici, L., 2006. Multiseismic cycle deformation rates from Holocene normal fault scarps on Crete (Greece). Terra Nova 18, 181190.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahljensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Deines, P., Langmuir, D., Harmon, R., 1974. Stable carbon isotope ratios and the existence of gas phase in the evolution of carbonate groundwaters. Geochimica et Cosmochimica Acta 39, 11471164.CrossRefGoogle Scholar
Dickson, J.A.D., 1965. A modified technique for carbonates in thin section. Nature 205, 587.CrossRefGoogle Scholar
Dotsika, E., Lykoudis, S., Poutoukis, D., 2010. Spatial distribution of the isotopic composition of precipitation and spring water in Greece. Global and Planetary Change 71, 141149.CrossRefGoogle Scholar
Evamy, B., 1963. The application of a chemical staining technique to a study of dedolomitisation. Sedimentology 2, 164170.CrossRefGoogle Scholar
Fabre, G., Maire, R., 1983. Néotectonique et morphologénèse insulaire en Grèce: le massif du Mont Ida (Crète). Méditerranée 2, 3940.CrossRefGoogle Scholar
Flocas, A.A., Giles, B.D., Angouridakis, V.E., 1983. On the estimation of annual monthly mean values of air temperature over Greece using multiple regression analysis. Archives for Meteorology, Geophysics, and Bioclimatology, Series B 32, 287295.CrossRefGoogle Scholar
Flügel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin.CrossRefGoogle Scholar
Friedman, I., O’Neil, J.R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer, M. (Ed.), Data of Geochemistry. U.S. Geological Survey Professional Paper 440, 1–12.CrossRefGoogle Scholar
Gallen, S.F., Wegmann, K.W, Bohnenstiehl, D.R., Pazzaglia, F.J., Brandon, M.T. & Fassoulas, C., (2014). Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece. Earth and Planetary Science Letters 398, 1124.CrossRefGoogle Scholar
Gandin, A., Capezzuoli, E., 2008. Travertine versus calcareous tufa: distinctive petrologic features and stable isotopes signatures. Il Quaternario: Italian. Journal of Quaternary Sciences 21, 125136.Google Scholar
Gradziński, M., Hercman, H., Staniszewski, K., 2014. Middle Pleistocene carbonate-cemented colluvium in southern Poland: its depositional processes, diagenesis and regional palaeoenvironmental significance. Sedimentary Geology 306, 2435.CrossRefGoogle Scholar
Halley, R.B., Harris, P.M., 1979. Fresh-water cementation of a 1,000-year-old oolite. Journal of Sedimentary Petrology 49, 969987.Google Scholar
Hancock, P.L., Barka, A.A., 1987. Kinematic indicators on active normal faults in western Turkey. Journal of Structural Geology 9, 573584.CrossRefGoogle Scholar
Hays, P., Grossman, E., 1991. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology 19, 441444.2.3.CO;2>CrossRefGoogle Scholar
Hendy, C.H., 1971. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801824.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006. Quaternary glacial history of the Mediterranean mountains. Progress in Physical Geography 30, 334364.CrossRefGoogle Scholar
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Den’ele, Y., Brun, J.P., 2013. Aegean tectonics: strain localisation slab tearing and trench retreat. Tectonophysics 597–598, 133.CrossRefGoogle Scholar
Kim, S.-T., O’Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 34613475.CrossRefGoogle Scholar
Kontakiotis, G., 2016. Late Quaternary paleoenvironmental reconstruction and paleoclimatic implications of the Aegean Sea (eastern Mediterranean) based on paleoceanographic indexes and stable isotopes. Quaternary International 401, 2842.CrossRefGoogle Scholar
Kuhlemann, J., Rohling, E., Krumrei, I., Kubric, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science 321, 11381340.CrossRefGoogle ScholarPubMed
Lamplugh, G., 1902. Calcrete. Geological Magazine 9, 575.CrossRefGoogle Scholar
Leontiadis, I., Payne, B., Christodoulou, T., 1988. Isotope hydrology of the Aghios Nikolaos area of Crete, Greece. Journal of Hydrology 98, 121132.CrossRefGoogle Scholar
Letsch, D., 2014. The distinction between carbonate cement and internal sediment in Quaternary gravels: a combined field, petrographic, and stable isotope study from northern Switzerland. Earth Science Research 3, 5671.Google Scholar
Martínez-Díaz, J.J., Hernández-Enrile, J.L., 2001. Using travertine deformations to characterize paleoseismic activity along an active oblique-slip fault: the Alhama de Murcia fault (Betic Cordillera, Spain). Acta Geologica Hispanica 36, 297313.Google Scholar
Mason, J., Schneiderwind, S., Pallikarakis, A., Wiatr, T., Mechernich, S., Papanikolaou, I., Reicherter, K., 2016. Fault structure and deformation rates at the Lastros-Sfaka Graben, Crete. Tectonophysics 683, 216232.CrossRefGoogle Scholar
Meulenkamp, J.E., Wortel, M.J.R., van Wamel, W.A., Spakman, W., Hoogerduyn Strating, E., 1988. On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene. Tectonophysics 146, 203215.CrossRefGoogle Scholar
Michetti, A.M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., et al., 2007. Environmental Seismic Intensity scale - ESI 2007/La scala di Intensità Sismica basata sugli effetti ambientali - ESI 2007. In: Guerrieri, L., Vittori, E. (Eds.), Memorie Descrittive della Carta geologica d’Italia. Vol. 74, Intensity Scale ESI 2007/La Scala di Intensità ESI 2007. APAT, Servizio Geologico d’Italia, Dipartimento Difesa del Suolo, Rome, pp. 7–8. http://www.isprambiente.gov.it/files/pubblicazioni/periodicitecnici/memorie/memorielxxiv/esi-environmental.pdf.Google Scholar
Mühlinghaus, C., Scholz, D., Mangini, A., 2009. Modelling fractionation of stable isotopes in stalagmites. Geochimica et Cosmochimica Acta 73, 72757289.CrossRefGoogle Scholar
Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Science Reviews 66, 261330.CrossRefGoogle Scholar
Nemec, W., Kazanci, N., 1999. Quaternary colluvium in west-central Anatolia: sedimentary facies and palaeoclimatic significance. Sedimentology 46, 139170.CrossRefGoogle Scholar
Nemec, W., Postma, G., 1993. Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. Special Publication of the International Association of Sedimentology 17, 256276.Google Scholar
O’Neil, J., Clayton, R., Mayeda, T., 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 55475558.CrossRefGoogle Scholar
Papanikolaou, D., Vassilakis, E., 2010. Thrust faults and extensional detachment faults in Cretan tectono-stratigraphy: implications for Middle Miocene extension. Tectonophysics 488, 233247.CrossRefGoogle Scholar
Papastamatiou, J., Vetoulis, D. & Tataris, A., 1959. Geological map of Greece, Ierapetra sheet. Institute for Geology and Subsurface Research, Greece.Google Scholar
Pentecost, A., 1993. British travertine: a review. Proceedings of the Geologists Association 104, 2339.CrossRefGoogle Scholar
Pentecost, A., 2005. Travertine. Springer-Verlag, Berlin.Google Scholar
Pentecost, A., Viles, H., 1994. A review and reassessment of travertine classification. Géographie Physique et Quaternaire 48, 305314.CrossRefGoogle Scholar
Pope, R., Candy, I., Skourtsos, E., 2016. A chronology of alluvial fan response to Late Quaternary sea level and climate change, Crete. Quaternary Research 86, 170183.CrossRefGoogle Scholar
Poser, J., 1957. Klimamorphologische Probleme auf Kreta. Zeitschrift für Geomorphologie 2, 113142.Google Scholar
Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P., 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488, 2230.CrossRefGoogle Scholar
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., et al., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth 111, B05411. http://dx.doi.org/10.1029/2005JB004051.CrossRefGoogle Scholar
Royden, L.H., Papanikolaou, D.J., 2011. Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochemistry, Geophysics, Geosystems 12, Q03010. http://dx.doi.org/10.1029/2010GC003280.CrossRefGoogle Scholar
Sanders, D., Ostermann, M., Kramers, J., 2010. Meteoric diagenesis of Quaternary carbonate-rocky talus slope successions (Northern Calcareous Alps, Austria). Facies 56, 2746.CrossRefGoogle Scholar
Stewart, I.S., Hancock, P.L., 1988. Normal fault evolution and fault scarp degradation in the Aegean region. Basin Research 1, 139153.CrossRefGoogle Scholar
Stewart, I.S., Hancock, P.L., 1990. Brecciation and fracturing within neotectonic normal fault zones in the Aegean region. Geological Society, London, Special Publications 54, 105–110.CrossRefGoogle Scholar
Stewart, I.S., Hancock, P.L., 1991. Scales of structural heterogeneity within neotectonic normal fault zones in the Aegean region. Journal of Structural Geology 13, 191204.CrossRefGoogle Scholar
Tucker, G., McCoy, S., Whittaker, A., Roberts, G., Lancaster, S., Phillips, R., 2011. Geomorphic significance of postglacial bedrock scarps on normal-fault footwalls. Journal of Geophysical Research: Earth Surface 116, F01022. http://dx.doi.org/10.1029/2010JF001861.CrossRefGoogle Scholar
Uehara, S., Shimamoto, T., 2004. Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle. Tectonophysics 378, 183195.CrossRefGoogle Scholar
Urey, H., Lowenstam, H., Epstein, S., McKinney, C., 1951. Measurement of paleotemperatures and temperatures of the upper cretaceous of England, Denmark, and the southeastern United States. Bulletin of the Geological Society of America 62, 399416.CrossRefGoogle Scholar
van Hinsbergen, D., Hafkenscheid, E., Spakman, W., Meulenkamp, J.E., Wortel, R., 2005. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33, 325328.CrossRefGoogle Scholar
Ventra, D., Chong Dìaz, G., De Boer, P., 2013. Colluvial sedimentation in a hyperarid setting (Atacama Desert, northern Chile): geomorphic controls and stratigraphic facies variability. Sedimentology 60, 12571290.CrossRefGoogle Scholar
Wibberley, C., Yielding, G., Di Toro, G., 2008. Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications 299, 5–33.CrossRefGoogle Scholar
Yurtsever, Y., 1976. Worldwide Survey of Stable Isotopes in Precipitation. Report of the Isotope Hydrology Section. International Atomic Energy Agency, Vienna.Google Scholar