Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T06:12:49.922Z Has data issue: false hasContentIssue false

High-resolution chronology for the Mesoamerican urban center of Teotihuacan derived from Bayesian statistics of radiocarbon and archaeological data

Published online by Cambridge University Press:  20 January 2017

Laura E. Beramendi-Orosco*
Affiliation:
Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510, Mexico
Galia Gonzalez-Hernandez
Affiliation:
Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510, Mexico
Jaime Urrutia-Fucugauchi
Affiliation:
Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510, Mexico
Linda R. Manzanilla
Affiliation:
Instituto de Investigaciones Antropologicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510, Mexico
Ana M. Soler-Arechalde
Affiliation:
Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510, Mexico
Avto Goguitchaishvili
Affiliation:
University of California-Santa Cruz, Earth and Planetary Sciences Department, 1156 High Street, Santa Cruz, CA 95064, USA
Nick Jarboe
Affiliation:
Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofisica, Sede Michoacan, Universidad Nacional Autonoma de Mexico, Campus Morelia, Michoacan, Mexico
*
Corresponding author. E-mail address:laura@geofisica.unam.mx

Abstract

A high-resolution 14C chronology for the Teopancazco archaeological site in the Teotihuacan urban center of Mesoamerica was generated by Bayesian analysis of 33 radiocarbon dates and detailed archaeological information related to occupation stratigraphy, pottery and archaeomagnetic dates. The calibrated intervals obtained using the Bayesian model are up to ca. 70% shorter than those obtained with individual calibrations. For some samples, this is a consequence of plateaus in the part of the calibration curve covered by the sample dates (2500 to 1450 14C yr BP). Effects of outliers are explored by comparing the results from a Bayesian model that incorporates radiocarbon data for two outlier samples with the same model excluding them. The effect of outliers was more significant than expected. Inclusion of radiocarbon dates from two altered contexts, 500 14C yr earlier than those for the first occupational phase, results in ages calculated by the model earlier than the archaeological records. The Bayesian chronology excluding these outliers separates the first two Teopancazco occupational phases and suggests that ending of the Xolalpan phase was around cal AD 550, 100 yr earlier than previously estimated and in accordance with previously reported archaeomagnetic dates from lime plasters for the same site.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackwell, P.G., Buck, C.E., and Reimer, P.J. Important features of the new radiocarbon calibration curves. Quaternary Science Reviews 25, 5–6 (2006). 408413.Google Scholar
Buck, C.E. Bayesian chronological data interpretation: where now?. Buck, C.E., and Millard, A.R. Tools for Constructing Chronologies. Crossing Disciplinary Boundaries. (2004). Springer-Verlag, London. 124.Google Scholar
Buck, C.E., and Christen, J.A. A novel approach to selecting samples for Radiocarbon dating. Journal of Archaeological Science 25, (1998). 303310.Google Scholar
Buck, C.E., Kenworthy, J.B., Litton, C.D., and Smith, A.F.M. Combining archaeological and radioarbon information: a Bayesian approach to calibration. Antiquity 65, (1991). 808821.CrossRefGoogle Scholar
Buck, C.E., Christen, J.A., James, G.N., (2001). BCal software. http://bcal.shef.ac.uk/ Accessed: 2006, 2007 and 2008.Google Scholar
Buck, C.E., Christen, J.A., James, G.N., (1999). BCal: an on- line Bayesian radiocarbon calibration tool. Internet Archaeology 7, (http://intarch.ac.uk/journal/issue7/buck/).CrossRefGoogle Scholar
Cabrera, R. Teopancaxco. Casa Barrios o del alfarero. De la Fuente, B. La Pintura Mural Prehispanica en Mexico. I. Teotihuacan. Tomo I. Catalogo. Instituto de Investigaciones Esteticas. (1995). UNAM, Mexico. 157161.Google Scholar
Christen, J.A. Summarizing a set of radiocarbon determinations: a robust approach. Applied Statistics 43, 3 (1994). 489503.CrossRefGoogle Scholar
Guilderson, T.P., Reimer, P.J., and Brown, T.A. The boon and bane of radiocarbon dating. Science 307, 5708 (2005). 362364.Google Scholar
Hueda-Tanabe, Y., Soler-Arechalde, A.M., Urrutia-Fucugauchi, J. et al. Archaeomagnetic studies in central Mexico—dating of Mesoamerican lime-plasters. Physics of The Earth and Planetary Interiors Paleo and Archeointensity: Methods, Techniques and New Results 147, 2–3 (2004). 269283.Google Scholar
Manzanilla, L.R. Living with the ancestros and offering to the gods: domestic ritual at Teotihuacan. Plunket, P. Domestic Ritual in Ancient Mesoamerica, Monograph 46, The Cotsen Institute in Archaeology. (2002). University of California, Los Angeles. 4352.Google Scholar
Manzanilla, L.R. Teopancazco:un conjunto residencial teotihuacano. Arqueología Mexicana XI, 64 (2003). 5053.Google Scholar
Manzanilla, L.R. El proceso de abandono de Teotihuacan y su reocupación por grupos epiclásicos. Trace 43, (2003). 7076.Google Scholar
Manzanilla, L.R. The abandonment of Teotihuacan. Inomata, T., and Webb, R.W. The Archaeology of Settlement Abandonment in Middle America. (2003). The University of Utah Press, Salt Lake City. 91101.Google Scholar
Manzanilla, L.R. Estados corporativos arcaicos. Organizaciones de excepción en escenarios excluyentes. Cuicuilco 13, 36 (2006). 1345.Google Scholar
Manzanilla, L., López, C., and Freter, A.C. Dating results from excavations in quarry tunnels behind the pyramid of the sun at Teotihuacan. Ancient Mesoamerica 7, (1996). 245266.CrossRefGoogle Scholar
McFadgen, B.G., Knox, F.B., and Cole, T.R.L. Radiocarbon calibration curve variations and their implications for the interpretation of New Zealand prehistory. Radiocarbon 36, 2 (1994). 221236.CrossRefGoogle Scholar
Millon, R. Urbanization at Teotihuacan, Mexico.I. The Teotihuacan Map, Part 1. Text. (1973). University of Texas Press, Austin.Google Scholar
Rattray, E.C. Fechamientos por radiocarbono en Teotihuacan. Arqueología 6, (1991). 318.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E. et al. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 3 (2004). 10291058.Google Scholar
Soler-Arechalde, A.M., Sanchez, F., Rodriguez, M. et al. Archaeomagnetic investigation of oriented pre-Columbian lime-plasters from Teotihuacan, Mesoamerica. Earth Planets and Space 58, 10 (2006). 14331439.Google Scholar
Stuiver, M., Reimer, P.J. and Reimer, R., (2005). CALIB 5.0. Radiocarbon Calibration Program. http://radiocarbon.pa.qub.ac.uk/ Accessed: 2005.Google Scholar
Wolfman, D. Mesoamerican chronology and archaeomagnetic dating, AD 1–1200. Eghmy, J.L., and Sternbeg, R.S. Archaeomagnetic Dating. (1990). University of Arizona Press, Tucson. 446 Google Scholar