Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T09:54:10.842Z Has data issue: false hasContentIssue false

High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment Parameters

Published online by Cambridge University Press:  20 January 2017

Frank Lamy
Affiliation:
Fachbereich Geowissenschaften, Universität Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
Dierk Hebbeln
Affiliation:
Fachbereich Geowissenschaften, Universität Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
Gerold Wefer
Affiliation:
Fachbereich Geowissenschaften, Universität Bremen, Postfach 33 04 40, D-28334, Bremen, Germany

Abstract

Marine sediment cores from the continental slope off mid-latitude Chile (33°S) were studied with regard to grain-size distributions and clay mineral composition. The data provide a 28,000-yr14C accelerator mass spectrometry-dated record of variations in the terrigenous sediment supply reflecting modifications of weathering conditions and sediment source areas in the continental hinterland. These variations can be interpreted in terms of the paleoclimatic evolution of mid-latitude Chile and are compared to existing terrestrial records. Glacial climates (28,000–18,000 cal yr B.P.) were generally cold–humid with a cold–semiarid interval between 26,000 and 22,000 cal yr B.P. The deglaciation was characterized by a trend toward more arid conditions. During the middle Holocene (8000–4000 cal yr B.P.), comparatively stable climatic conditions prevailed with increased aridity in the Coastal Range. The late Holocene (4000–0 cal yr B.P.) was marked by more variable paleoclimates with generally more humid conditions. Variations of rainfall in mid-latitude Chile are most likely controlled by shifts of the latitudinal position of the Southern Westerlies. Compared to the Holocene, the southern westerly wind belt was located significantly farther north during the last glacial maximum. Less important variations of the latitudinal position of the Southern Westerlies also occurred on shorter time scales.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E. (1988). Correction of accelerator mass spectrometry14 . Paleoceanography 3, 635645.CrossRefGoogle Scholar
Bard, E., Arnold, M., Fairbanks, R.G., and Hamelin, B. (1993). 230 234 14 . Radiocarbon 35, 191199.CrossRefGoogle Scholar
Biscaye, P.E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin 76, 803832.CrossRefGoogle Scholar
Caviedes, C. (1990). Rainfall variation, snowline depression, and vegetational shifts in Chile during the Pleistocene. Climatic Change 19, 94114.Google Scholar
Chamley, H. (1989). Clay Sedimentology. Springer, Berlin.CrossRefGoogle Scholar
Clapperton, C.M. (1993). Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.CrossRefGoogle Scholar
Clapperton, C.M., Sugden, D.E., Kaufman, D.S., and McCulloch, R.D. (1995). The last glaciation in Central Magellan Strait, southernmost Chile. Quaternary Research 44, 133148.CrossRefGoogle Scholar
Esquevin, J. (1969). Influence de la composition chimique des illites sur le cristallinité. Bulletin du Centre de Recherches de Pau-S.N.P.A. 3, 147154.Google Scholar
Gingele, F.X. (1996). Holocene climatic optimum in Southwest Africa—Evidence from the marine clay mineral record. Palaeogeography, Palaeoclimatology, Palaeoecology 122, 7787.CrossRefGoogle Scholar
Grosjean, M., Geyh, M.A., Messerli, B., Schreier, H., and Veit, H. (1998). A late-Holocene (<2600 BP) glacial advance in the south central Andes (29°S), northern Chile. The Holocene 8, 473479.CrossRefGoogle Scholar
Hebbeln, D., Wefer, cruise participants, 1995, Cruise Report of R/V SONNE Cruise 102, Valparaiso–Valparaiso, 9.5–28.6.95. Universität Bremen, Bremen, Google Scholar
Heusser, C.J. (1989). Southern westerlies during the Last Glacial Maximum. Quaternary Research 31, 423425.CrossRefGoogle Scholar
Heusser, C.J. (1990). Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 107127.CrossRefGoogle Scholar
Heusser, C.J., Denton, G.H., Hauser, A., Andersen, B.G., and Lowell, T.V. (1995). Quaternary pollen records from the Archipiélago de Chiloé in the context of glaciation and climate. Revista Geológica de Chile 22, 2546.Google Scholar
Heusser, C.J., Lowell, T.V., Heusser, L.E., Hauser, A., Andersen, B.C., and Denton, G.H. (1996). Full-glacial–late-glacial palaeoclimate of the Southern Andes: Evidence from pollen, bettle and glacial records. Journal of Quaternary Science 11, 173184.3.0.CO;2-5>CrossRefGoogle Scholar
Hulton, N., Sugden, D., Payne, A., and Clapperton, C. (1994). Glacier modeling and the climate of Patagonia during the Last Glacial Maximum. Quaternary Research 42, 119.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Wefer, G. Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 141, (1998). 233251.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., and Wefer, G. (1998). Terrigenous sediment supply along the Chilean continental slope: Modern latitudinal trends of texture and composition. Geologische Rundschau 87, CrossRefGoogle Scholar
Leroux, M. (1993). The Mobile Polar High: a new concept explaining present mechanisms of meridional air-mass and energy exchanges and global propagation of paleoclimatic changes. Global and Planetary Change 7, 6993.CrossRefGoogle Scholar
Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Heusser, L.E., Schlüchter, C., Marchant, D.R., and Denton, G.H. (1995). Interhemispheric correlation of Late Pleistocene glacial events. Science 269, 15411549.CrossRefGoogle ScholarPubMed
Marchant, M. (1997). Rezente und spätquartäre Sedimentation planktischer Foraminiferen im Peru-Chile Strom. Universität Bremen, Bremen.Google Scholar
Markgraf, V. (1989). Reply to C. J. Heusser's “Southern Westerlies” during the Last Glacial Maximum. Quaternary Research 31, 426432.CrossRefGoogle Scholar
McGlone, M.S., Kershaw, A.P., Markgraf, V. El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records.(1992). El Niño: Historical and Paleoclimatic aspects of the Southern Oscillationp. 435–462Google Scholar
Miller, A. (1976). The climate of Chile.Schwerdtfeger, W. World Survey of Climatology, Vol. 12 Elsevier, Amsterdam.113145.Google Scholar
Milliman, J.D., Rutkowski, C., and Meybeck, M. (1995). River Discharge to the Sea: A Global River Index (GLORI). NIOZ, Texel.Google Scholar
Nadeau, M.J., Schleicher, M., Grootes, P.M., Erlenkeuser, H., Gottolong, A., Mous, D.J.W., Sarnthein, J.M., and Willkomm, N. (1997). The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research 123, 2230.CrossRefGoogle Scholar
Petschick, R., Kuhn, G., and Gingele, F. (1996). Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport and relation to oceanography. Marine Geology 130, 203229.CrossRefGoogle Scholar
Ruttland, J., and Fuenzalida, H. (1991). Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology 11, 6376.Google Scholar
Shaffer, G., Salinas, S., Pizarro, O., Vega, A., and Hormazabal, S. (1995). Currents in the deep ocean off Chile (30°S). Deep-Sea Research 42, 425436.CrossRefGoogle Scholar
Singer, A. (1984). The paleoclimatic interpretation of clay minerals in sediments—A review. Earth-Science Reviews 21, 251293.CrossRefGoogle Scholar
Stein, R. (1985). Rapid grain-size analyses of clay and silt fraction by Sedigraph 5000D: Comparison with Coulter Counter and Atterberg methods. Journal of Sedimentary Petrology 55, 590615.CrossRefGoogle Scholar
Stoffers, P., Hekinian, R., (1992). Cruise Report Sonne 80a—Midplate III Oceanic Volcanism in the Southeast Pacific. Universität Kiel, Kiel.Google Scholar
Strub, P.T., Mesias, J.M., Montecino, V., Ruttlant, J., Salinas, S. Coastal ocean circulation off Western South America.Robinson, A.R., and Brink, K.H. (1998). The Global Coastal Ocean. Regional Studies and Syntheses. Wiley, New York.273314.Google Scholar
Thornburg, T., and Kulm, L.D. (1987). Sedimentation in the Chile Trench: Petrofacies and provenance. Journal of Sedimentary Petrology 57, 5574.Google Scholar
Veit, H. (1996). Southern Westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°S). Palaeogeography Palaeoclimatology Palaeoecology 123, 107119.CrossRefGoogle Scholar
Villagrán, C. (1993). Una interpretatión climática del registro palinológico del último ciclo glacial–postglacial en Sudamérica. Bullitin de l'Institut François des études andines 22, 243258.CrossRefGoogle Scholar
Villagrán, C., and Varela, J. (1990). Palynological evidence for increased aridity on the Central Chilean coast during the Holocene. Quaternary Research 34, 198207.CrossRefGoogle Scholar
Von Huene, R., Corvalan, J., and Korstgard, J. (1995). Fahrtbericht zur Forschungsreise SO 101—Condor. GEOMAR, Kiel.Google Scholar
Zeil, W. (1986). Südamerika. Enke Verlag, Stuttgart.Google Scholar