Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T22:04:55.142Z Has data issue: false hasContentIssue false

Holocene development of maritime ombrotrophic peatlands of the St. Lawrence North Shore in eastern Canada

Published online by Cambridge University Press:  20 January 2017

Gabriel Magnan*
Affiliation:
GEOTOP — Université du Québec à Montréal (UQAM), C.P. 8888 Succursale Centre-ville, Montreal, Québec H3C 3P8, Canada
Michelle Garneau
Affiliation:
GEOTOP — Université du Québec à Montréal (UQAM), C.P. 8888 Succursale Centre-ville, Montreal, Québec H3C 3P8, Canada
Serge Payette
Affiliation:
Département de biologie — Université Laval, 1045 avenue de la Médecine, Québec G1V 0A6, Canada
*
* Corresponding author. Fax: + 1 514 987 3635.E-mail address: magnangabriel@gmail.com (G. Magnan).

Abstract

Macrofossil analyses were used to reconstruct long-term vegetation successions within ombrotrophic peatlands (bogs) from the northern shorelines of the St. Lawrence Estuary (Baie-Comeau) and the Gulf of St. Lawrence (Havre-St-Pierre). Over the Holocene, the timing and the ecological context of peatland inception were similar in both regions and were mainly influenced by fluctuations in relative sea level. Peat accumulation started over deltaic sands after the withdrawal of the Goldthwait Sea from 7500 cal yr BP and above silt–clay deposits left by the Laurentian marine transgression after 4200 cal yr BP. In each region, the early vegetation communities were similar within these two edaphic contexts where poor fens with Cyperaceae and eastern larch (Larix laricina) established after land emergence. The rapid transitions to ombrotrophy in the peatlands of Baie-Comeau are associated with particularly high rates of peat accumulation during the early developmental stage. The results suggest that climate was more propitious to Sphagnum growth after land emergence in the Baie-Comeau area. Macrofossil data show that treeless Sphagnum-dominated bogs have persisted over millennia and that fires had few impacts on the vegetation dynamics. This study provides insight into peatland vegetation responses to climate in a poorly documented region of northeastern America.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arlen-Pouliot, Y. Développement holocène et dynamique récente des tourbières minérotrophes structurées du haut-boréal Québecois. PhD thesis (2009). Université Laval, Québec.Google Scholar
Arlen-Pouliot, Y., and Bhiry, N. Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic Québec, Canada. The Holocene 15, (2005). 408419.CrossRefGoogle Scholar
Bauer, I.E., Gignac, L.D., and Vitt, D.H. Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Canadian Journal of Botany 81, (2003). 833847.CrossRefGoogle Scholar
Beaulieu-Audy, V., Garneau, M., Richard, P.J.H., and Asnong, H. Holocene palaeoecological reconstruction of three boreal peatlands in the La Grande Rivière region, Québec, Canada. The Holocene 19, (2009). 459476.CrossRefGoogle Scholar
Belyea, L.R., and Baird, A.J. Beyond the “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecological Monographs 76, (2006). 299322.CrossRefGoogle Scholar
Bernatchez, P. Évolution littorale holocène et actuelle des complexes deltaïques de Betsiamites et de Manicouagan-outardes: synthèse, processus, causes et perspectives. PhD thesis (2003). Université Laval, Québec.Google Scholar
Bhiry, N., Payette, S., and Robert, É.C. Peatland development at the arctic tree line (Québec, Canada) influenced by flooding and permafrost. Quaternary Research 67, (2007). 426437.CrossRefGoogle Scholar
Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, (2010). 512518.CrossRefGoogle Scholar
Bunbury, J., Finkelstein, S.A., and Bollmann, J. Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Quaternary Research 78, (2012). 275284.CrossRefGoogle Scholar
Camill, P., Barry, A., Williams, E., Andreassi, C., Limmer, J., and Solick, D. Climate–vegetation–fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. Journal of Geophysical Research 114, (2009). G04017 CrossRefGoogle Scholar
Crawford, R.M.M., Jeffree, C.E., and Rees, W.G. Paludification and forest retreat in northern oceanic environments. Annals of Botany 91, (2003). 213226.CrossRefGoogle ScholarPubMed
Damman, A.W.H. Hydrology, development, and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog. Canadian Journal of Botany 64, (1986). 384394.Google Scholar
Dionne, J.-C. Relative sea-level changes in the St. Lawrence Estuary from deglaciation to present day. Geological Society of America Special Papers 351, (2001). 271284.Google Scholar
Elliott, S.M., Roe, H.M., and Patterson, R.T. Testate amoebae as indicators of hydroseral change: an 8500 year record from Mer Bleue Bog, eastern Ontario, Canada. Quaternary International 268, (2012). 128144.CrossRefGoogle Scholar
Frolking, S., and Roulet, N.T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology 13, (2007). 10791088.CrossRefGoogle Scholar
Garneau, M. Paléoécologie d'une tourbière littorale de l'estuaire maritime du Saint-Laurent, l'Isle-Verte. (1998). Geological Survey of Canada, Natural Resources, Canada, Ottawa.CrossRefGoogle Scholar
Garneau, M., van Bellen, S., Magnan, G., Beaulieu-Audy, V., Lamarre, A., and Asnong, H. Holocene carbon dynamics of boreal and subarctic peatlands from Québec, Canada. The Holocene (2014). (in press) Google Scholar
Glaser, P.H. Raised bogs in eastern North America — regional controls for species richness and floristic assemblages. Journal of Ecology 80, (1992). 535554.CrossRefGoogle Scholar
Glaser, P.H., and Janssens, J.A. Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Canadian Journal of Botany 64, (1986). 395415.CrossRefGoogle Scholar
Glaser, P.H., Hansen, B.C.S., Siegel, D.I., Reeve, A.S., and Morin, P.J. Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada. Journal of Ecology 92, (2004). 10361053.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, (2001). 101110.CrossRefGoogle Scholar
Hughes, P.D.M., and Barber, K.E. Mire development across the fen–bog transition on the Teifi floodplain at Tregaron Bog, Ceredigion, Wales, and a comparison with 13 other raised bogs. Journal of Ecology 91, (2003). 253264.CrossRefGoogle Scholar
Hughes, P.D.M., Blundell, A., Charman, D.J., Bartlett, S., and Daniell, J.R.G. An 8500 cal. year multi-proxy climate record from a bog in eastern Newfoundland: contributions of meltwater discharge and solar forcing. Quaternary Science Reviews 25, (2006). 12081227.CrossRefGoogle Scholar
Hutchinson, M.F., McKenney, D.W., Lawrence, K., Pedlar, J.H., Hopkinson, R.F., Milewska, E., and Papadopol, P. Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. Journal of Applied Meteorology and Climatology 48, (2009). 725741.CrossRefGoogle Scholar
Ireland, R.R. Moss Flora of the Maritime Provinces. (1982). National Museums of Canada, Ottawa.Google Scholar
Ireland, A.W., Booth, R.K., Hotchkiss, S.C., and Schmitz, J.E. A comparative study of within-basin and regional peatland development: implications for peatland carbon dynamics. Quaternary Science Reviews 61, (2013). 8595.CrossRefGoogle Scholar
Jeglum, J.K., Rothwell, R.L., Berry, G.J., and Smith, G.K.M. A peat sampler for rapid survey. Frontline, Technical Note, Canadian Forestry Service, Sault-Ste-Marie. (1992). Google Scholar
Jowsey, P.C. An improved peat sampler. New Phytologist 65, (1966). 245248.CrossRefGoogle Scholar
Juggins, S. C2 Program. (2011). University of Newcastle, UK.Google Scholar
Juggins, S. Rioja: analysis of Quaternary science data. R package version 0.8-5. http://cran.r-project.org/package=rioja (2012). Google Scholar
Korhola, A., Ruppel, M., Seppä, H., Väliranta, M., Virtanen, T., and Weckström, J. The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. Quaternary Science Reviews 29, (2010). 611617.CrossRefGoogle Scholar
Kuhry, P. The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. Journal of Ecology 82, (1994). 899910.CrossRefGoogle Scholar
Lamarre, A., Garneau, M., and Asnong, H. Holocene paleohydrological reconstruction of a permafrost peatland using testate amoebae and macrofossil analyses, Kuujjuarapik, subarctic Quebec, Canada. Review of Palaeobotany and Palynology 186, (2012). 131141.CrossRefGoogle Scholar
Lavoie, M., and Richard, P.J.H. The role of climate on the developmental history of Frontenac Peatland, southern Quebec. Canadian Journal of Botany 78, (2000). 668684.CrossRefGoogle Scholar
Lavoie, M., Filion, L., and Robert, É.C. Boreal peatland margins as repository sites of long-term natural disturbances of balsam fir/spruce forests. Quaternary Research 71, (2009). 295306.CrossRefGoogle Scholar
Lavoie, M., Pellerin, S., and Larocque, M. Examining the role of allogenous and autogenous factors in the long-term dynamics of a temperate headwater peatland (southern Québec, Canada). Palaeogeography, Palaeoclimatology, Palaeoecology 386, (2013). 336348.CrossRefGoogle Scholar
Lévesque, P.E.M., Dinel, H., and Larouche, A.C. Guide illustré des macrofossiles végétaux des tourbières du Canada. Publication no. 1817. Agriculture Canada. Ministère des approvisionnements et services, Ottawa. (1988). Google Scholar
MacDonald, G.M., Beilman, D.W., Kremenetski, K.V., Sheng, Y., Smith, L.C., and Velichko, A.A. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, (2006). 285288.CrossRefGoogle ScholarPubMed
Magnan, G., and Garneau, M. Climatic and autogenic control on Holocene carbon sequestration in ombrotrophic peatlands of maritime Quebec, eastern Canada. The Holocene (2014). (In press) CrossRefGoogle Scholar
Magnan, G., and Garneau, M. Evaluating long-term regional climate variability in the maritime region of the St. Lawrence North Shore (eastern Canada) using a multi-site comparison of peat-based paleohydrological records. Journal of Quaternary Science 29, (2014). 209220.CrossRefGoogle Scholar
Magnan, G., Lavoie, M., and Payette, S. Impact of fire on the long-term vegetation dynamics of ombrotrophic peatlands in northwestern Québec, Canada. Quaternary Research 77, (2012). 110121.CrossRefGoogle Scholar
Mauquoy, D., and van Geel, B. Mire and peat macros. Elias, S.A. Encyclopaedia of Quaternary Science. (2007). Elsevier, Oxford. 23152336.Google Scholar
Mauquoy, D., Hughes, P.D.M., and van Geel, B. A protocol for plant macrofossil analysis of peat deposits. Mires and Peat 7, (2010). 15.Google Scholar
Muller, S.D., Richard, P.J.H., and Larouche, A.C. Holocene development of a peatland (southern Québec): a spatio-temporal reconstruction based on pachymetry, sedimentology, microfossils and macrofossils. The Holocene 13, (2003). 649664.CrossRefGoogle Scholar
Ohlson, M., and Tryterud, E. Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. The Holocene 10, (2000). 519525.CrossRefGoogle Scholar
Payette, S. Peat inception and climate change in northern Quebec. Mörner, N.A., and Karlén, W. Climatic Change on a Yearly to Millennial Basis. (1984). Reidel, London, UK. 173179.Google Scholar
Payette, S. Late-Holocene development of subarctic ombrotrophic peatlands: allogenic and autogenic succession. Ecology 69, (1988). 516531.CrossRefGoogle Scholar
Payette, S., and Bouchard, A. Le contexte physique et biogéographique. Payette, S., and Rochefort, L. Écologie des tourbières du Québec-Labrador. (2001). Les Presses de l'Université Laval, Québec, Canada. 937.Google Scholar
Payette, S., Garneau, M., Delwaide, A., and Schaffhauser, A. Forest soil paludification and mid-Holocene retreat of jack pine in easternmost North America: evidence for a climatic shift from fire-prone to peat-prone conditions. The Holocene 23, (2013). 494503.CrossRefGoogle Scholar
R Development Core Team R: A Language and Environment for Statistical Computing. (2011). R Foundation for Statistical Computing, Vienna, Austria. 3-900051-07-0 (URL http://www.R-project.org/)Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L. et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Robichaud, A., and Bégin, Y. Development of a raised bog over 9000 years in Atlantic Canada. Mires and Peat 5, (2009). 119.Google Scholar
Tarnocai, C., Kettles, I.M., and Lacelle, B. Peatlands of Canada Database. (2005). Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada. ((2005) digital database) Google Scholar
Tolonen, K., Huttunen, P., and Jungner, J. Regeneration of two coastal raised bogs in eastern North America: stratigraphy, radiocarbon dates and rhizopod analysis from sea cliffs. Annales Academiae Scientiarum Fennicae. Series A. III. Geologica-Geographica 139, (1985). 151.Google Scholar
van Bellen, S., Garneau, M., and Booth, R.K. Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: impact of climate-driven ecohydrological change. The Holocene 21, (2011). 12171231.CrossRefGoogle Scholar
van Bellen, S., Dallaire, P.-L., Garneau, M., and Bergeron, Y. Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Global Biogeochemical Cycles 25, (2011). GB2016 CrossRefGoogle Scholar
Vitt, D.H., and Chee, W.-L. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89, (1990). 87106.CrossRefGoogle Scholar
Yu, Z. Holocene carbon flux histories of the world's peatlands: global carbon-cycle implications. The Holocene 21, (2011). http://dx.doi.org/10.1177/0959683610386982 CrossRefGoogle Scholar
Yu, Z., Vitt, D.H., Campbell, I.D., and Apps, M.J. Understanding Holocene peat accumulation pattern of continental fens in western Canada. Canadian Journal of Botany 81, (2003). 267282.CrossRefGoogle Scholar
Yu, Z., Campbell, I.D., Campbell, C., Vitt, D.H., Bond, G.C., and Apps, M.J. Carbon sequestration in wester Canadian peat highly sensitive to Holocene wet–dry climate cycles at millennial timescale. The Holocene 13, (2003). 801808.CrossRefGoogle Scholar
Yu, Z., Beilman, D.W., and Jones, M.C. Sensitivity of northern peatland carbon dynamics to Holocene climate change. Carbon cycling in northern peatlands. Geophysical Monograph Series 184, (2009). 5569.Google Scholar