Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T13:18:26.035Z Has data issue: false hasContentIssue false

Holocene hydroclimatic variability in the Zanskar Valley, Northwestern Himalaya, India

Published online by Cambridge University Press:  30 April 2020

Sheikh Nawaz Ali*
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Shailesh Agrawal
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Anupam Sharma
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Binita Phartiyal
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Paulramasamy Morthekai
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Pawan Govil
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Ravi Bhushan
Affiliation:
Physical Research Laboratory, Ahmadabad, India
Shazi Farooqui
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Partha Sarathi Jena
Affiliation:
Physical Research Laboratory, Ahmadabad, India
Ajay Shivam
Affiliation:
Physical Research Laboratory, Ahmadabad, India
*
*Corresponding author at: snawazali@gmail.com

Abstract

A 1.3-m-long sediment core from the Penzi-la pass, Zanskar Valley, provides a record of hydroclimatic conditions and abrupt climate changes over short time scales since the mid-Holocene. These climatic changes of centennial time scale are crucial to understanding the hydroclimatic variability in northwestern (NW) Himalaya. Relatively higher δ13C values complemented by total organic carbon, loss on ignition, grain size parameters, and lower Rubidium/Strontium ratios during the Late Northgrippian imply that the area had a dry climate during the period from ~6200–4500 cal yr BP. Subsequently, a relatively stable hydroclimatic environment was experienced between ~4500 and 3400 cal yr BP. After ~3400 cal yr BP the multiproxy data show gradual strengthening of hydroclimatic conditions, however, this trend is interrupted by high-amplitude abrupt reversals (dry events) with a stepwise decreasing intensity at ~3300, 2600, 1700, and 400 cal yr BP. The two most important climatic events of the last millennia (i.e., Medieval Climate Anomaly and the Little Ice Age) were also recorded from the sedimentary archive. Overall, our data show a progressive increase in the moisture availability in the Zanskar Valley and are in agreement with the late Holocene climatic trends of central and western Himalaya.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agnihotri, R., Dutta, K., Bhushan, R., Somayajulu, B., 2002. Evidence for solar forcing on the Indian monsoon during the last millennium. Earth and Planetary Science Letters 198, 521527.10.1016/S0012-821X(02)00530-7CrossRefGoogle Scholar
Agrawal, S., Sanyal, P., Sarkar, A., Jaiswal, M.K., Dutta, K., 2012. Variability of Indian monsoonal rainfall over the past 100 ka and its implications to C3–C4 vegetational Change. Quaternary Research 77, 159170.10.1016/j.yqres.2011.09.003CrossRefGoogle Scholar
Ali, S.N., Dubey, J., Ghosh, R., Quamar, M.F., Sharma, A., Morthekai, P., Dimri, A.P., Shekhar, M., Arif, M., Agrawal, S., 2018. High frequency abrupt shifts in the Indian summer monsoon since Younger Dryas in the Himalaya. Scientific Reports 8, 9287.10.1038/s41598-018-27597-6CrossRefGoogle ScholarPubMed
Ali, S.N., Juyal, N., 2013. Chronology of late quaternary glaciations in Indian Himalaya: a critical review. Journal of the Geological Society of India 82, 628638.Google Scholar
Bali, R., Chauhan, M.S., Mishra, A.K., Ali, S.N., Tomar, A., Khan, I., Singh, D.S., Srivastava, P., 2017. Vegetation and climate change in the temperate-subalpine belt of Himachal Pradesh since 6300 cal. yrs. B.P., inferred from pollen evidence of Triloknath palaeolake. Quaternary International 444, 1123.10.1016/j.quaint.2016.07.057CrossRefGoogle Scholar
Banerji, U.S., Arulbalaji, P., Padmalal, D., 2020. Holocene climate variability and Indian Summer Monsoon: An overview. The Holocene, 130. doi.org/10.1177/0959683619895577.Google Scholar
Basu, S., Agrawal, S., Sanyal, P., Mahato, P., Kumar, S., Sarkar, A., 2015. Carbon isotopic ratios of modern C3–C4 plants from the Gangetic plain, India and its implications to paleovegetational reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 2232.10.1016/j.palaeo.2015.08.012CrossRefGoogle Scholar
Basu, S., Sanyal, P., Pillai, A.A.S., Ambili, A., 2019. Response of grassland ecosystem to monsoonal precipitation variability during the Mid-Late Holocene: Inferences based on molecular isotopic records from Banni grassland, western India. PloS one 14, e0212743.10.1371/journal.pone.0212743CrossRefGoogle ScholarPubMed
Bengtsson, L., Enell, M., 1986. Chemical analysis. In Berglund, B.E. (Ed): Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, 423445.Google Scholar
Beniston, M., 2006. Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 316.10.1007/s10750-005-1802-0CrossRefGoogle Scholar
Benn, D.I., Owen, L.A., 1998. The role of the Indian summer monsoon and the mid–latitude westerlies in Himalayan glaciations: review and speculative discussion. Journal of the Geological Society of London, 155, 353363.10.1144/gsjgs.155.2.0353CrossRefGoogle Scholar
Bhattacharya, F., Rastogi, B.K., Thakkar, M.G., Patel, R.C., Juyal, N., 2014. Fluvial landforms and their implication towards understanding the past climate and seismicity in the northern Katrol Hill Range, western India. Quaternary International 333, 4961.10.1016/j.quaint.2014.03.002CrossRefGoogle Scholar
Bhattacharyya, A., 1988. Vegetation and climate during postglacial in the vicinity of Rohtang Pass, Great Himalayan Range. Pollen et Spores 30, 417427.Google Scholar
Bhattacharyya, A., Chauhan, M.S., 1997. Vegetational and climatic changes during recent past around Tipra Bank Glacier, Garhwal Himalaya. Current Science 72, 408412.Google Scholar
Bhushan, R., Sati, S.P., Rana, N., Shukla, A.D., Mazumdar, A.S., Juyal, N., 2018. High-resolution millennial and centennial scale Holocene monsoon variability in the Higher Central Himalayas. Palaeogeography Palaeoclimatology, Palaeoecology 489, 95104.10.1016/j.palaeo.2017.09.032CrossRefGoogle Scholar
Bhutiyani, M.R., Kale, V.S., Pawar, N.J. 2010. Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. International Journal of Climatology 30, 535548.10.1002/joc.1920CrossRefGoogle Scholar
Bird, B.W., Lei, Y., Perello, M., Polissar, P.J., Yao, T., Finney, B., Bain, D., Pompeani, D., Thompson, L.G., 2017. Late-Holocene Indian summer monsoon variability revealed from a 3300-year-long lake sediment record from Nir'pa Co, southeastern Tibet. The Holocene 27, 541552.10.1177/0959683616670220CrossRefGoogle Scholar
Birks, H.H., Birks, H.J.B., 2006. Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany 15, 235–51.10.1007/s00334-006-0066-6CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.10.1126/science.1065680CrossRefGoogle ScholarPubMed
Bothe, O., Fraedrich, K., Zhu, X.H., 2011. Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. International Journal of Climatology 31, 832846.10.1002/joc.2124CrossRefGoogle Scholar
Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., et al. , 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9, 231.10.1038/ngeo2652CrossRefGoogle Scholar
Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240.10.1016/0012-821X(84)90089-XCrossRefGoogle Scholar
Cerling, T.E., 1992. Use of carbon isotopes in paleosols as an indicator of the P (CO2) of the paleoatmosphere. Global Biogeochemical Cycles 6, 307314.10.1029/92GB01102CrossRefGoogle Scholar
Chang, H., An, Z., Wu, F., Jin, Z.D., Liu, W., Song, Y., 2013. A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 364373.10.1016/j.palaeo.2013.06.006CrossRefGoogle Scholar
Chauhan, M.S., 2006. Late Holocene vegetation and climate change in the alpine belt of Himachal Pradesh. Current Science 91, 15721578.Google Scholar
Chauhan, M.S., Mazari, R.K., Rajagopalan, G., 2000. Vegetation and climate in upper Spiti region, Himachal Pradesh during late Holocene. Current Science 79, 373377.Google Scholar
Chauhan, M.S., Sharma, C., 2000. Late-Holocene vegetation and climate in Dewar Tal area, Inner Lesser Garhwal Himalaya. Palaeobotanist 49, 509514.Google Scholar
Chauhan, O.S., Dayal, A.M., Basavaiah, N., Kader, U.S.A., 2010. Indian summer monsoon and winter hydrographic variations over past millennia resolved by clay sedimentation. Geochemistry, Geophysics, Geosystems 11, Q09009. doi:10.1029/2010GC003067.CrossRefGoogle Scholar
Chen, J., An, Z., Head, J., 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research 51, 215219.10.1006/qres.1999.2038CrossRefGoogle Scholar
Chen, J., Wang, H., Lu, H., 1996. Behaviours of REE and other trace elements during pedological weathering––evidence from chemical leaching of loess and paleosol from the Luochuan section in central China. Acta Geologica Sinica 9, 290302.Google Scholar
Cook, E.R., Krusic, P.J., Jones, P.D., 2003. Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. International Journal of Climatology 23, 707732.10.1002/joc.911CrossRefGoogle Scholar
Crowley, T.J., 2000. Causes of climate change over the past 1000 years. Science 289, 270–77.10.1126/science.289.5477.270CrossRefGoogle ScholarPubMed
Crowley, T.J., North, G.R., 1991. Paleoclimatology. Oxford University Press, New York.Google Scholar
D'Arrigo, R., Jacoby, G., Frank, D., Pederson, N., Cook, E., Buckley, B., Nachin, B., Mijiddorj, R., Dugarjav, C., 2001. 1738 years of Mongolian temperature variability inferred from a tree ring width chronology of Siberian pine. Geophysical Research Letters 28, 543546.10.1029/2000GL011845CrossRefGoogle Scholar
Dasch, E.J., 1969. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochimica et Cosmochimica Acta 33, 15211552.10.1016/0016-7037(69)90153-7CrossRefGoogle Scholar
Dean, W.E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Research 44, 242248.Google Scholar
Dearing, J.A., 2006. Climate-human-environment interactions: resolving our past. Climate of the Past 2, 187203.10.5194/cp-2-187-2006CrossRefGoogle Scholar
Dearing, J.A., Battarbee, R.W., Dikau, C.R., Larocque, I., Oldfield, F. 2006. Human–environment interactions: towards synthesis and simulation. Regional Environmental Change 6, 115123.10.1007/s10113-005-0012-7CrossRefGoogle Scholar
Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L., Freeman, K.H., 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences 107, 57385743.10.1073/pnas.0910513107CrossRefGoogle ScholarPubMed
Dixit, Y., Hodell, D.A., Giesche, A., Tandon, S.K., Gázquez, F., Saini, H.S., Skinner, L.C., et al. , 2018. Intensified summer monsoon and the urbanization of Indus Civilization in northwest India. Scientific Reports 8, 4225, doi:10.1038/s41598-018-22504-5.CrossRefGoogle ScholarPubMed
Dixit, Y., Hodell, D. A., Petrie, C.A. 2014. Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology 42, 339342.10.1130/G35236.1CrossRefGoogle Scholar
Dixit, Y., Tandon, S.K., 2016. Hydroclimatic variability on the Indian subcontinent in the past millennium: review and assessment. Earth-Science Reviews 161, 115.10.1016/j.earscirev.2016.08.001CrossRefGoogle Scholar
Doose-Rolinski, H., Rogalla, U., Scheeder, G., Lückge, A., von Rad, U., 2001. High-resolution temperature and evaporation changes during the late Holocene in the northeastern Arabian Sea. Paleoceanography and Paleoclimatology 16, 358367.10.1029/2000PA000511CrossRefGoogle Scholar
Dubey, J., Ghosh, R., Agrawal, S., Quamar, M.F., Morthekai, P., Sharma, R.K., Sharma, A., Pandey, P., Srivastava, V., Ali, S.N., 2018. Characteristics of modern biotic data and their relationship to vegetation of the Alpine zone of Chopta valley, North Sikkim, India: Implications for palaeovegetation reconstruction. The Holocene 28, 363376.10.1177/0959683617729449CrossRefGoogle Scholar
Dutt, S., Gupta, A.K., Clemens, S.C., Cheng, H., Singh, R.K., Kathayat, G., Edwards, R.L., 2015. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP. Geophysical Research Letters 42, 55265532.10.1002/2015GL064015CrossRefGoogle Scholar
Dutt, S., Gupta, A.K., Wünnemann, B., Yan, D., 2018. A long arid interlude in the Indian summer monsoon during ~4,350 to 3,450 cal. yr BP contemporaneous to displacement of the Indus valley civilization. Quaternary International 482, 8392.10.1016/j.quaint.2018.04.005CrossRefGoogle Scholar
Ekart, D.D., Cerling, T.E., Montañez, I.P., Tabor, N.J., 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. American Journal of Science 299, 805827.10.2475/ajs.299.10.805CrossRefGoogle Scholar
Fernández-Donado, L., González Rouco, J.F., Raible, C., Ammann, C.M., Barriopedro, D., Garcia-Bustamante, E., Jungclaus, J.H., et al. , 2013. Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Climate of the Past 9, 393421.10.5194/cp-9-393-2013CrossRefGoogle Scholar
Finkel, R.C., Owen, L.A., Barnard, P.L., Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya. Geology 31, 561564.10.1130/0091-7613(2003)031<0561:BDOMEM>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J.D., Villa, I.M., Neff, U., et al. , 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170188.10.1016/j.quascirev.2006.04.012CrossRefGoogle Scholar
Francey, R.J., Farquhar, G.D., 1982. An explanation of 13C/ 12C variations in tree rings. Nature 297, 2831.10.1038/297028a0CrossRefGoogle Scholar
Fuchs, G.R., 1982. Explanations of the geologictectonic map of the Himalaya. Geological Survey of Austria, Wien, 150.Google Scholar
Ganju, A., Nagar, Y.C., Sharma, L.N., Sharma, S., Juyal, N., 2018. Luminescence chronology and climatic implication of the late quaternary glaciation in the Nubra valley, Karakoram Himalaya, India. Palaeogeography Palaeoclimatology, Palaeoecology 502, 5262.10.1016/j.palaeo.2018.04.022CrossRefGoogle Scholar
Ghosh, R., Bera, S., Sarkar, A., Paruya, D.K., Yao, Y.-F., Li, C.-S., 2015. A ~50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas. Quaternary Science Reviews 114, 100115.10.1016/j.quascirev.2015.02.002CrossRefGoogle Scholar
Giosan, L., Clift, P.D., Macklin, M.G., Fuller, D.Q., Constantinescu, S., Durcan, J.A., Stevens, T., et al. , 2012. Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences of the United States of America 109, 16881694.10.1073/pnas.1112743109CrossRefGoogle ScholarPubMed
Gupta, A.K., Anderson, D.M., Overpeck, J.T., 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354357.10.1038/nature01340CrossRefGoogle Scholar
Harning, D.J., Geirsdóttir, Á., Miller, G. H., 2018. Punctuated Holocene climate of Vestfirðir, Iceland, linked to internal/external variables and oceanographic conditions. Quaternary Science Reviews 189, 3142.10.1016/j.quascirev.2018.04.009CrossRefGoogle Scholar
Haslett, J., Parnell, A.C., 2008. A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society: Series C (Applied Statistics) 57(4), 399418.10.1111/j.1467-9876.2008.00623.xCrossRefGoogle Scholar
Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, 163178.10.1016/j.quascirev.2005.02.006CrossRefGoogle Scholar
Hodell, D.A., Schelske, C.L., 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography 43, 200214.10.4319/lo.1998.43.2.0200CrossRefGoogle Scholar
Jin, Z., Cao, J., Wu, J., Wang, S., 2006. A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surface Processes and Landforms 31, 285291.10.1002/esp.1243CrossRefGoogle Scholar
Ju, J., Zhu, L., Feng, J.-L., Wang, J., Wang, Y., Xie, M., Peng, P., Zhen, X., , X., 2012. Hydrodynamic process of Tibetan Plateau lake revealed by grain size: Case study of Pumayum Co. Chinese Science Bulletin 57, 24332441.10.1007/s11434-012-5083-5CrossRefGoogle Scholar
Juyal, N., 2014. Ladakh: the high-altitude Indian cold desert. In Landscapes and Landforms of India. Springer, Dordrecht, 115124.10.1007/978-94-017-8029-2_10CrossRefGoogle Scholar
Kale, V.S., Mishra, S., Baker, V.R., 2003. Sedimentary records of palaeofloods in the bedrock gorges of the Tapi and Narmada Rivers, central India. Current Science 84, 10721079.Google Scholar
Kale, V.S., Singhvi, A.K., Mishra, P.K., Banerjee, D., 2000. Sedimentary records and luminescence chronology of Late Holocene palaeofloods in the Luni River, Thar Desert, northwest India. Catena 40, 337358.CrossRefGoogle Scholar
Kaniewski, D., Van Campo, E., 2017. 3.2 Ka BP Megadrought and the Late Bronze Age Collapse. In Weiss, H. (Ed.), Megadrought and Collapse: From Early Agriculture to Angkor. Oxford University Press, New York, pp. 161182.Google Scholar
Kar, R., Ranhotra, P.S., Bhattacharyya, A., Sekar, B., 2002. Vegetation vis-á-vis climate and glacial fluctuations of the Gangotri glacier since the last 2000 years. Current Science 82, 347351.Google Scholar
Kathayat, G., Cheng, H., Sinha, A., Yi, L., Li, X., Zhang, H., Li, H., Ning, Y., Edwards, R.L. 2017. The Indian monsoon variability and civilization changes in the Indian subcontinent. Science Advances 3, e1701296.10.1126/sciadv.1701296CrossRefGoogle ScholarPubMed
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., Miller, G.H., et al. , 2009. Recent warming reverses long-term Arctic cooling. Science 325, 12361239.10.1126/science.1173983CrossRefGoogle ScholarPubMed
Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences of the United States of America 107, 19691–9695.10.1073/pnas.1004933107CrossRefGoogle ScholarPubMed
Kohn, M.J., 2016. Carbon isotope discrimination in C3 land plants is independent of natural variations in p CO2. Geophysical Perspective Letters 2, 3543.CrossRefGoogle Scholar
Kotlia, B.S., Joshi, L.M., 2013. Late Holocene climatic changes in Garhwal Himalaya. Current Science 104 911919.Google Scholar
Kotlia, B.S., Singh, A.K., Joshi, L.M., Dhaila, B.S., 2015. Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies. Quaternary International 371, 244253.10.1016/j.quaint.2014.10.066CrossRefGoogle Scholar
Kulke, H., Rothermund, D., 2004. A History of India. Psychology Press, London.10.4324/9780203391266CrossRefGoogle Scholar
Kumar, K., Agrawal, S., Sharma, A., Pandey, S., 2019. Indian summer monsoon variability and vegetation changes in the core monsoon zone, India, during the Holocene: A multiproxy study. The Holocene 1, 110119. doi: 10.1177/0959683618804641CrossRefGoogle Scholar
Kumar, K.R., Kumar, K.K., Pant, G.B., 1994. Diurnal asymmetry of surface temperature trends over India. Geophysical Research Letters 21 677680.10.1029/94GL00007CrossRefGoogle Scholar
Lamb, H.H., 1965. The early medieval warm epoch and its sequel. Palaeogeography Palaeoclimatology, Palaeoecology 1, 1337.10.1016/0031-0182(65)90004-0CrossRefGoogle Scholar
Lee, S.Y., Seong, Y.B., Owen, L.A., Murari, M.K., Lim, H.S., Yoon, H.I., Yoo, K.-C., 2014. Late Quaternary glaciation in the Nun-Kun massif, northwestern India. Boreas 43, 6789.10.1111/bor.12022CrossRefGoogle Scholar
Lehner, F., Born, A., Raible, C.C., Stocker, T.F., 2013. Amplified inception of European Little Ice Age by sea ice–ocean–atmosphere feedbacks. Journal of Climate 26, 75867602.10.1175/JCLI-D-12-00690.1CrossRefGoogle Scholar
Leipe, C., Demske, D., Tarasov, P. 2014. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: Implications for palaeoclimatic and archaeological research. Quaternary International 348, 93112.10.1016/j.quaint.2013.05.005CrossRefGoogle Scholar
Leipe, C., Demske, D., Tarasov, P.E., Wünnemann, B., Riedel, F., HIMPAC Members, 2014. Potential of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human–environmental interactions. Quaternary International 348, 113129.10.1016/j.quaint.2014.02.026CrossRefGoogle Scholar
Ljungqvist, F.C., 2010. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geografiska Annaler: Series A, Physical Geography 92, 339351.10.1111/j.1468-0459.2010.00399.xCrossRefGoogle Scholar
Maizels, J.K., 1977. Experiments on the origin of kettle-holes. Journal of Glaciology, 18, 291303.10.1017/S0022143000021365CrossRefGoogle Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.10.1126/science.1177303CrossRefGoogle ScholarPubMed
Martin-Puertas, C., Matthes, K., Brauer, A., Muscheler, R., Hansen, F., Petrick, C., Aldahan, A., Possnert, G., Van Geel, B., 2012. Regional atmospheric circulation shifts induced by a grand solar minimum. Nature Geoscience 5, 397401.10.1038/ngeo1460CrossRefGoogle Scholar
Mayewski, P.A., Lyons, W.B., Ahmad, N., Smith, G., Pourchet, M., 1984. Interpretation of the chemical and physical time-series retrieved from Sentik Glacier, Ladakh Himalaya, India. Journal of Glaciology 30, 6676.10.1017/S0022143000008509CrossRefGoogle Scholar
Mazari, R.K., Bagati, T.N., Chauhan, M.S., Rajagopalan, G., 1996. Paleoclimatic record of last 2000 years in Trans-Himalayan Lahaul-Spiti region. In: Mikami, T., Matsumoto, E., Ohta, S., Sweda, T. (Eds.), Proceedings of Paleoclimate and Environmental Variability in Austral-Asian Transect during the Past 2000 Years: Proceedings of the 1995 Nagoya IGBP-PAGES/PEPII Symposium. Nagoya, Japan, 262269.Google Scholar
McGregor, H.V., Evans, M.N., Goosse, H., Leduc, G., Martrat, B., Addison, J.A., Mortyn, P.G., et al. , 2015. Robust global ocean cooling trend for the pre-industrial Common Era. Nature Geoscience 8, 671678.10.1038/ngeo2510CrossRefGoogle Scholar
Meyers, P.A., Lallier-Vergés, E., 1999. Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. Journal of Paleolimnology 21, 345372.CrossRefGoogle Scholar
Miller, G.H., Geirsdóttir, Á., Zhong, Y., Larsen, D.J., Otto-Bliesner, B.L., Holland, M.M., Bailey, D.A., et al. , 2012. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters 39, L02708.10.1029/2011GL050168CrossRefGoogle Scholar
Mishra, A., 2017. Changing Temperature and Rainfall Patterns of Uttarakhand. International Journal of Environmental Sciences and Natural Resources 7, 16.10.19080/IJESNR.2017.07.555716CrossRefGoogle Scholar
Mishra, P.K., Prasad, S., Ambili, A., Plessen, B., Jehangir, A., Gaye, B., Menzel, P., Weise, S.M., Yousuf, A.R., 2015. Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes. Palaeogeography, Palaeoclimatology, Palaeoecology 425, 7683.10.1016/j.palaeo.2015.02.031CrossRefGoogle Scholar
Misra, P., Tandon, S.K., Sinha, R., 2019. Holocene climate records from lake sediments in India: Assessment of coherence across climate zones. Earth-Science Reviews 190, 370397.10.1016/j.earscirev.2018.12.017CrossRefGoogle Scholar
Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J., Jansen, E., 2004. Sea surface temperatures and ice rafting in the Holocene North Atlantic: climate influences on northern Europe and Greenland. Quaternary Science Reviews 23, 21132126.CrossRefGoogle Scholar
Murari, M.K., Owen, L.A., Dortch, J.M., Caffee, M.W., Dietsch, C., Fuchs, M., Haneberg, W.C., Sharma, M.C. and Townsend-Small, A., 2014. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan–Tibetan orogen. Quaternary Science Reviews 88, 159182.10.1016/j.quascirev.2014.01.013CrossRefGoogle Scholar
National Research Council 2005. The Geological Record of Ecological Dynamics—Understanding the Biotic Effects of Future Environmental Change. National Academies Press, Washington, DC.Google Scholar
Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., Matter, A., 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290293.10.1038/35077048CrossRefGoogle ScholarPubMed
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., et al. , 2019. vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-project.org/package=veganGoogle Scholar
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., 1996. The southwest Indian Monsoon over the last 18 000 years. Climate Dynamics 12, 213225.10.1007/BF00211619CrossRefGoogle Scholar
Owen, L.A., Derbyshire, E., Richardson, S., Benn, D.I., Evans, D.J.A., Mitchell, W.A., 1996. The quaternary glacial history of the Lahul Himalaya, northern India. Journal of Quaternary Science 11, 2542.3.0.CO;2-K>CrossRefGoogle Scholar
Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quaternary Science Reviews, 88, 1454.10.1016/j.quascirev.2013.11.016CrossRefGoogle Scholar
Park, J., Park, J., Yi, S., Kim, J.C., Lee, E., Choi, J., 2019. Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula. Scientific Reports 9, 10806. doi:10.1038/s41598-019-47264-8.CrossRefGoogle ScholarPubMed
Parnell, A., 2016. Bchron: Radiocarbon dating, age-depth modelling, relative sea level rate estimation, and non-parametric phase modelling. R package version 4.1.1.http://CRAN.R-project.org/package=Bchron.Google Scholar
Patnaik, R., Gupta, A.K., Naidu, P.D., Yadav, R.R., Bhattacharyya, A., Kumar, M., 2012. Indian monsoon variability at different time scales: Marine and terrestrial proxy records. Proceedings of the Indian National Science Academy 78, 535547Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., et al. , 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429.10.1038/20859CrossRefGoogle Scholar
Petrie, C.A., Singh, R.N., Bates, J., Dixit, Y., French, C.A.I., Hodell, D.A., Jones, P.J., et al. , 2017. Adaptation to variable environments, resilience to climate change: Investigating Land, Water and Settlement in Indus Northwest India. Current Anthropology 58, 130.10.1086/690112CrossRefGoogle Scholar
Phadtare, N.R., 2000. Sharp decrease in summer monsoon strength 4000–3500 cal. yr B.P. in the central higher Himalaya of India based on pollen evidence from alpine peat. Quaternary Research 53, 122129.10.1006/qres.1999.2108CrossRefGoogle Scholar
Polanski, S., Fallah, B., Befort, D.J., Prasad, S., Cubasch, U., 2014. Regional moisture change over India during the past millennium: A comparison of multi-proxy reconstructions and climate model simulations. Global and Planetary Change 122, 176185.10.1016/j.gloplacha.2014.08.016CrossRefGoogle Scholar
Prasad, S., Ambili, A., Riedel, N., Sarkar, S., Menzel, P., Basavaiah, N., Krishnan, R., et al. , 2014. Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India. Earth and Planetary Science Letters 391, 171182.CrossRefGoogle Scholar
Prasad, S., Enzel, Y., 2006. Holocene paleoclimates of India. Quaternary Research 66, 442453.CrossRefGoogle Scholar
Prasad, V., Farooqui, A., Sharma, A., Phartiyal, B., Chakraborty, S., Bhandari, S., Raj, R., Singh, A., 2014. Mid–late Holocene monsoonal variations from mainland Gujarat, India: A multi-proxy study for evaluating climate culture relationship. Palaeogeography, Palaeoclimatology, Palaeoecology 397, 3851.10.1016/j.palaeo.2013.05.025CrossRefGoogle Scholar
Quade, J., Cater, J.M.L., Ojha, T.P., Adam, J., Harrison, T.M., 1995, Late Miocene environmental change in Nepal and the northern Indian subcontinent:Stable isotopic evidence from paleosols. Geological Society of America Bulletin 107, 1381139710.1130/0016-7606(1995)107<1381:LMECIN>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Quade, J., Cerling, T.E., Bowman, J.R., 1989. Development of Asian monsoon revealed by marked ecologic shift in the latest Miocene of northern Pakistan: Nature 342, 163166.10.1038/342163a0CrossRefGoogle Scholar
Ranhotra, P.S., Bhattacharyya, A., Kar, R., Sekar, B., 2001. Vegetation and climatic changes around Gangotri glacier during Holocene. Geological Survey of India Special Publication 65, 6771.Google Scholar
Rao, Z., Guo, W., Cao, J., Shi, F., Jiang, H., Li, C., 2017. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review. Earth-Science Reviews 165, 110119.CrossRefGoogle Scholar
Rao, Z., Xu, Y., Xia, D.S., Xie, L., Chen, F., 2013. Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia. Organic Geochemistry 63, 5663.10.1016/j.orggeochem.2013.08.007CrossRefGoogle Scholar
Ratnagar, S., 2002. The End of the Great Harappan Tradition. Manohar Publishers and Distributors, New Delhi, India.Google Scholar
Rawat, S., Gupta, A.K., Sangode, S.J., Srivastava, P., Nainwal, H.C., 2015. Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quaternary Science Reviews 114, 167181.CrossRefGoogle Scholar
R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Robinson, Z., 2010. The hydrological and geomorphological evolution of kettle-hole lakes, Skeiðarársandur, SE Iceland. Geophysical Research Abstracts 12, EGU2010-12456-1.Google Scholar
Rowan, A.V., 2017. The ‘Little Ice Age’ in the Himalaya: A review of glacier advance driven by Northern Hemisphere temperature change. The Holocene 27(2), 292308.10.1177/0959683616658530CrossRefGoogle Scholar
Rühland, K., Phadtare, N.R., Pant, R.K., Sangode, S.J., Smol, J.P., 2006. Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophysical Research Letters 33, L15709.CrossRefGoogle Scholar
Rupper, S., Roe, G., Gillespie, A., 2009. Spatial patterns of Holocene glacier advance and retreat in Central Asia. Quaternary Research 72, 337346.10.1016/j.yqres.2009.03.007CrossRefGoogle Scholar
Sanwal, J., Kotlia, B.S., Rajendran, C., Ahmad, S.M., Rajendran, K., Sandiford, M., 2013. Climatic variability in Central Indian Himalaya during the last ~1800 years: Evidence from a high resolution speleothem record. Quaternary International 304, 183192.10.1016/j.quaint.2013.03.029CrossRefGoogle Scholar
Sarkar, S., Prasad, S., Wilkes, H., Riedel, N., Stebich, M., Basavaiah, N., Sachse, D., 2015. Monsoon source shifts during the drying mid-Holocene: Biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. Quaternary Science Reviews 123, 144157.10.1016/j.quascirev.2015.06.020CrossRefGoogle Scholar
Searle, M.P., Fryer, B.J., 1986. Garnet, tourmaline and muscovite-bearing leucogranites, gneisses, and migmatites of the Higher Himalayas from Zanskar, Kulu, Lahoul and Kashmir. Geological Society, London, Special Publications 19, 85201.10.1144/GSL.SP.1986.019.01.10CrossRefGoogle Scholar
Sharma, A., Kumar, K., Laskar, A., Singh, S.K., Mehta, P., 2017. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system. Geomorphology 284, 516.10.1016/j.geomorph.2016.12.014CrossRefGoogle Scholar
Sharma, A., Phartiyal, B., 2018. Late Quaternary Palaeoclimate and Contemporary Moisture Source to Extreme NW India: A Review on Present Understanding and Future Perspectives. Frontiers in Earth Science 6, 150. doi: 10.3389/feart.2018.00150.CrossRefGoogle Scholar
Sharma, C., Chauhan, M.S., 2001. Late Holocene vegetation and climate of Kupur (Sikkim), eastern Himalaya, India. Journal of the Palaeontological Society of India 46, 5158.Google Scholar
Sharma, S., Hussain, A., Mishra, A.K., Lone, A., Solanki, T., Khan, M.K., 2018. Geomorphic investigation of the late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya. Journal of Earth System Science 127, 9. doi.org/10.1007/s12040-017-0911-2CrossRefGoogle Scholar
Sharma, S., Shukla, A.D., 2018. Factors governing the pattern of glacier advances since the Last Glacial Maxima in the transitional climate zone of the Southern Zanskar Ranges, NW Himalaya. Quaternary Science Reviews 201, 223240.10.1016/j.quascirev.2018.10.006CrossRefGoogle Scholar
Shekhar, M., Bhardwaj, A., Singh, S., Ranhotra, P.S., Bhattacharyya, A., Pal, A.K., Roy, I., Martín-Torres, F.J., Zorzano, M.P., 2017. Himalayan glaciers experienced significant mass loss during later phases of little ice age. Scientific Reports 7, 10305.10.1038/s41598-017-09212-2CrossRefGoogle ScholarPubMed
Shrestha, A.B., Wake, C.P., Mayewski, P.A., Dibb, J.E., 1999. Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate 12, 27752786.10.1175/1520-0442(1999)012<2775:MTTITH>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., Biswas, J., 2011. The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophysical Research Letters 38, 532560.10.1029/2011GL047713CrossRefGoogle Scholar
Sinha, A., Cannariato, K.G., Stott, L.D., Cheng, H., Edwards, R.L., Yadava, M.G., Ramesh, R., Singh, I.B., 2007. A 900-year (600 to 1500 AD) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophysical Research Letters 34 L16707. doi:10.1029/2007GL030431.CrossRefGoogle Scholar
Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S.F., Berkelhammer, M., Mudelsee, M., Biswas, J., Edwards, R.L., 2015.Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nature Communications 6, 6309.10.1038/ncomms7309CrossRefGoogle ScholarPubMed
Smol, J.P., 2002. Pollution of Lakes and Rivers—APaleoenvironmental Perspective. Arnold, London.Google Scholar
Srivastava, P., Agnihotri, R., Sharma, D., Meena, N., Sundriyal, Y.P., Saxena, A., Bhushan, R., et al. , 2018. 8000-year monsoonal record from Himalaya revealing reinforcement of tropical and global climate systems since mid-Holocene. Scientific Reports 7, 14515. doi:10.1038/s41598-017-15143-9.CrossRefGoogle Scholar
Staubwasser, M., Sirocko, F., Grootes, P.M., Segl, M., 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters 30, 1425. doi:10.1029/2002GL016822.CrossRefGoogle Scholar
Steinhilber, F., Beer, J., Fröhlich, C., 2009. Total solar irradiance during the Holocene. Geophysical Research Letters 36, L19704, doi:10.1029/2009GL040142.CrossRefGoogle Scholar
Sternberg, L., Deniro, M.J., Ajie, H., 1984. Stable hydrogen isotope ratios of saponifiable lipids and cellulose nitrate from CAM, C3 and C4 plants. Phytochemistry 23, 24752477.10.1016/S0031-9422(00)84078-9CrossRefGoogle Scholar
Svendsen, J.I., Mangerud, J., 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene 7, 4557.10.1177/095968369700700105CrossRefGoogle Scholar
Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith, C., White, J.W., Vaughn, B.H., Popp, T., 2007. The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews 26, 7081.10.1016/j.quascirev.2006.07.017CrossRefGoogle Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal, H.A., Cole-Dai, J., Bolzan, J.F., 1997. Tropical climate instability: the last glacial cycle from a Qinghaie Tibetan ice core. Science 276, 18211825.CrossRefGoogle Scholar
Trenberth, K.E., Dai, A., Rasmussen, R.M., Parsons, D.B., 2003. The changing character of precipitation. Bulletin of the American Meteorological Society 84, 12051217.10.1175/BAMS-84-9-1205CrossRefGoogle Scholar
Von Rad, U., Schaaf, M., Michels, K.H., Schulz, H., Berger, W.H., Sirocko, F., 1999. A 5000-yr record of climate change in varved sediments from the Oxygen Minimum Zone off Pakistan, Northeastern Arabian Sea. Quaternary Research 51, 3953.CrossRefGoogle Scholar
Wang, B., Wu, R., Lau, W.K.M., 2001. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. Journal of Climate 14, 40734090.2.0.CO;2>CrossRefGoogle Scholar
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308, 854857.10.1126/science.1106296CrossRefGoogle Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., et al. , 2008. Mid-to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.10.1016/j.quascirev.2008.06.013CrossRefGoogle Scholar
Warrier, A.K., Pednekar, H., Mahesh, B.S., Mohan, R., Gazi, S., 2016. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance. Polar Science 10, 89100.10.1016/j.polar.2015.12.005CrossRefGoogle Scholar
Wiersma, A.P., Renssen, H., 2006. Model-data comparison for the 8.2 ka B.P. event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews 25, 6388.10.1016/j.quascirev.2005.07.009CrossRefGoogle Scholar
Witzel, M., 1987. On the Localisation of Vedic Texts and Schools (Materials on Vedic Sakhas, 7), in India and the Ancient World. History, Trade and Culture before A.D. 650. P.H.L. Eggermont Jubilee Volume, ed. by G. Pollet, Orientalia Lovaniensia Analecta 25, Leuven 1987, 173213.Google Scholar
Witzel, M., 1999. Aryan and Non-Aryan Names in Vedic India. Data for the Linguistic Situation, c. 1900–500 B.C., in Bronkhorst, J. and Deshpande, M., eds., Aryans and Non-Non-Aryans, Evidence, Interpretation, and Ideology, Cambridge (Harvard Orienatal Series, Opera Minora 3), 337404.Google Scholar
Wright, R.P., 2010. The Ancient Indus: Urbanism, Economy, and Society in South Asia.Cambridge University Press.Google Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt-Imjela, C., Bloemendal, J., Diekmann, B., et al. , 2010. Hydrological evolution during the last 15 kyr in the Tso Kar Lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews 29, 11381155.10.1016/j.quascirev.2010.02.017CrossRefGoogle Scholar
Xu, C., Sano, M., Dimri, A.P., Ramesh, R., Nakatsuka, T., Shi, F., Guo, Z., 2018. Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies. Climate of the Past 14, 653664.10.5194/cp-14-653-2018CrossRefGoogle Scholar
Yadava, M.G., Ramesh, R., 2001. Past rainfall and trace element variations in a tropical speleothem from India. Mausam 52, 307316.Google Scholar
Yadav, R.R., Braeuning, A., Singh, J., 2011. Tree ring inferred summer temperature variations over the last millennium in western Himalaya, India. Climate Dynamics 36, 15451554.CrossRefGoogle Scholar
Yang, X., Zhu, B., Wang, X., Li, C., Zhou, Z., Chen, J., Yin, J., Lu, Y., 2008. Late Quaternary environmental changes and organic carbon density in the Hunshandake Sandy Land, eastern Inner Mongolia, China. Global and Planetary Change, 61, 7078.CrossRefGoogle Scholar
Yanhong, W., Lücke, A., Zhangdong, J., Sumin, W., Schleser, G.H., Battarbee, R.W., Weilan, X., 2006. Holocene climate development on the central Tibetan Plateau: A sedimentary record from Cuoe Lake. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 328340.CrossRefGoogle Scholar
Yuan, S., 2009. The Mystery of the Guge Kingdom in Tibet. China Religious Culture Publisher, China.Google Scholar
Zhu, H., Zheng, Y., Shao, X., Liu, X., Xu, Y., Liang, E., 2008. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chinese Science Bulletin 53, 39143920.Google Scholar
Supplementary material: File

Ali et al. supplementary material

Ali et al. supplementary material

Download Ali et al. supplementary material(File)
File 3.1 MB