Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T02:17:45.432Z Has data issue: false hasContentIssue false

Holocene paleoenvironmental implications of diatom and organic carbon records from the southeastern Kara Sea (Siberian Margin)

Published online by Cambridge University Press:  20 January 2017

Yelena I. Polyakova
Affiliation:
Department of Geography, Lomonosov Moscow State University, Vorobievy Gory, 119899 Moscow, Russia
Ruediger Stein*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Columbusstrasse, 27568 Bremerhaven, Germany
*
*Corresponding author. Fax: +49 471 4831 1580.

E-mail address:rstein@awi-bremerhaven.de (R. Stein).

Abstract

Diatom assemblages and organic carbon records from two sediment cores located within an estuarian bay of the inner Kara Sea trace changes in Yenisei River runoff and postglacial depositional environments. Paleosalinity and sea-ice reconstructions are based on modern relationships of local diatom assemblages and summer surface-water salinity. Approximately 15,500 cal yr B.P., rivers and bogs characterized the study area. When sea level reached the 38- to 40-m paleo-isobath approximately 9300 cal yr B.P., the coring site was flooded. From 9300–9100 cal yr B.P., estuarine conditions occurred proximal to the depocenter of fluvially derived material, and salinity was <7–8. Paleosalinity increased to 11–13 by 7500 cal yr B.P., following postglacial sea-level rise and the southward shift of the Siberian coast. Sharp decreases in diatom accumulation rates, total sediment, and organic carbon also occurred, suggesting the presence of brackish conditions and greater distance between the coast and study site. Maximum paleosalinity (up to 13) was recorded between 7500 and 6000 cal yr B.P., which was likely caused by the enhanced penetration of Atlantic waters to the Kara Sea. Stepwise decreases to modern salinity levels happened over the last 6000 cal yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., Carmack, E.C., (1989). The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research 94, 485498.CrossRefGoogle Scholar
Aibulatov, N.A., (2001). Geoecology of Shelf and Coasts of Russian Seas. Noosphera, Moscow.Google Scholar
Andreev, A.A., Klimanov, V.A., (2000). Quantitative Holocene climatic reconstruction from Arctic Russia. Journal of Paleolimnology 24, 8191.Google Scholar
Andreev, A.A., Siegert, C., Klimanov, V.A., Derevyagin, A.Yu., Shilova, G.N., Melles, M., (2002). Late Pleistocene and Holocene vegetation and climate on the Taymyr Lowland, Northern Siberia. Quaternary Research 57, 138150.Google Scholar
Battarbee, R.W., (1973). A new method for estimation of absolute microfossil numbers, with reference especially to diatoms. Limnology and Oceanography 18, 647654.CrossRefGoogle Scholar
Bauch, H.A., Polyakova, Ye.I., (2000). Late Holocene variations in Arctic shelf hydrology and sea-ice regime: evidence from north of the Lena Delta. International Journal of Earth Science 89, 569577.Google Scholar
Bauch, H.A., Polyakova, Ye.I., (2003). Diatom-inferred salinity records from the Arctic Siberian margin: implications for fluvial runoff patterns during the Holocene. Paleoceanography 18, 5.15.10.Google Scholar
Bauch, H.A., Kassens, H., Erlenkeuser, H., Grootes, P.M., Thiede, J., (1999). Depositional environment of the Laptev Sea shelf (Arctic Siberia) during the Holocene. Boreas 28, 194204.Google Scholar
Bauch, H.A., Kassens, H., Kunz-Pirrung, M., Naidina, O., Thiede, J., (2001a). Composition and flux of Holocene sediments on the eastern Laptev Sea shelf, Arctic Siberia. Quaternary Research 55, 344351.CrossRefGoogle Scholar
Bauch, H.A., Mueller-Lupp, T., Taldenkova, E., Spielhagen, R.F., Kassens, H., Grootes, P.M., Thiede, J., Heinemeier, J., Petryashov, V.V., (2001b). Chronology of the Holocene transgression at the North Siberian margin. Global and Planetary Change 31, 125139.Google Scholar
Bezrukova, E.V., (1999). Palaeogeography of Baikal Region During the Late Pleistocene and Holocene. Nauka, Novosibirsk.In Russian.Google Scholar
Bezrukova, Ye.V., Abzaeva, A.A., Vershinina, K.E., Krapivina, S.M., (2002). History of distribution of forests on the eastern coast of Lake Baikal during the Late Pleistocene and Holocene. Geography: Natural Resources 3, 6874.(in Russian).Google Scholar
Bradbury, P., Bezrukova, Ye.V., Chernyaeva, G.P., Colman, S.M., Khursevich, G., King, J.W., Likhoshway, Ye.V., (1994). A synthesis of post-glacial diatom records from Lake Baikal. Journal of Paleolimnology 10, 213252.Google Scholar
Burenkov, V.I., Vasil'kov, A.P., (1995). The influence of runoff from land on the distribution of hydrologic characteristics of the Kara Sea. Oceanology 41, 5 591599.(English translation).Google Scholar
Campeau, S., Pienitz, R., Hequette, A., (1999). Diatoms from the Beaufort Sea coast, southern Arctic Ocean (Canada). Modern analogues for reconstructing Late Quaternary environments and relative sea levels. Bibliotheca Diatomologica Band 41, 1244.Google Scholar
Cremer, H., (1999a). Distribution patterns of diatom surface sediment assemblages in the Laptev Sea (Arctic Ocean). Marine Micropalaeontology 38, 3967.Google Scholar
Cremer, H., (1999b). Spatial distribution of diatom surface sediment assemblages on the Laptev Sea shelf. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean System in the Siberian Arctic. Dynamics and History Springer-Verlag, New York.533560.CrossRefGoogle Scholar
Dittmers, K., Niessen, F., Stein, R., (2003). Holocene sediment budget and sedimentary history for the Ob and Yenisei estuaries. Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.457478.Google Scholar
Dmitrenko, I.A., Gribanov, V.A., Volkov, D.L., Kassens, H., (1999). Impact of river discharge on the sea land fast ice extension in the Russian arctic shelf area. Tuhkuri, J., Riska, K., Proceedings of 15th International Conference on Port and Ocean Engineering Under Arctic Conditions, Helsinki University of Technology, Espoo, Finland, August 23–27 311321.Google Scholar
Dmitrenko, I.A., Gribanov, V.A., Volkov, D.L., Berezovskaya, S.L., Kassens, H., (2000). The role of riverine runoff in the interannual variability of the fast ice distribution in the Russian Arctic. Meteorology and Hydrology 3, 8594.(in Russian).Google Scholar
Fahl, K., Stein, R., (1997). Modern organic-carbon-deposition in the Laptev Sea and the adjacent continental slope: surface-water productivity vs. terrigenous input. Organic Geochemistry 26, 379390.CrossRefGoogle Scholar
Fahl, K., Stein, R., (1999). Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: problems and perspectives. Marine Chemistry 63, 293309.CrossRefGoogle Scholar
Fairbanks, R.G., (1989). A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637642.Google Scholar
Gordeev, V.V., (2000). River input of water, sediment, major ions, nutrients and trace metals from Russian territory to the Arctic Ocean. Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P., The Freshwater Budget of the Arctic Ocean. Kluwer, Netherlands 297322.CrossRefGoogle Scholar
Hahne, J., Melles, M., (1999). Climate and vegetation history of the Taymyr Peninsula since Middle Weichselian time–Palynological evidence from Lake sediments. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean System in the Siberian Arctic. Dynamics and History Springer-Verlag, New York.407423.Google Scholar
Hanzlick, D., Aagaard, K., (1980). Freshwater and Atlantic water in the Kara Sea. Journal of Geophysical Research 85, 49374942.CrossRefGoogle Scholar
Kaplin, P.A., (1973). Nearest History of the World Ocean Coasts. MSU Publisher House, Moscow.In Russian.Google Scholar
Karabanov, E.E., Prokopenko, E., Williams, D., Khursevich, G.K., (2000). A new record of Holocene climate change from bottom sediments of Lake Baikal. Palaeogeography, Palaeoclimatology, Palaeoecology 156, 211224.CrossRefGoogle Scholar
Karcher, M.J., Kulakov, M., Pivovarov, S., Schauer, U., Kauker, F., Schlitzer, R., (2003). Atlantic water flow to the Kara Sea: comparing model results with observations. Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.4772.Google Scholar
Kleiber, H.-P., Niessen, F., (2000). Variations of continental discharge pattern in space and time: implications from the Laptev Sea continental margin, Arctic Siberia. International Journal of Earth Science 89, 605616.Google Scholar
Kraus, M., Matthiessen, J., Stein, R., (2003). A Holocene marine pollen record from the northern Yenisei estuary (southeastern Kara Sea, Siberia). Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.435456.Google Scholar
Lisitzin, A.P., (1995). Marginal filter in the oceans. Oceanology 34, 671682.(English translation).Google Scholar
Lisitzin, A.P., (2002). Sea-ice and Iceberg Sedimentation in the Ocean. Recent and Past Springer-Verlag, Berlin-Heidelberg.Google Scholar
Lisitzin, A.P., Vinogradov, M.E., (1995). International high-latitude expedition in the Kara Sea (the 49th cruise of the R/V Dmitriy Mendeleev). Oceanology 34, 583590.English translation.Google Scholar
Lisitzin, A.P., Shevchenko, V.P., Vinogradov, M.E., Severina, O.V., Vavilova, V.V., (1995). Particle fluxes in the Kara Sea and Ob and Yenisey estuaries. Oceanology 34, 683693.English translation.Google Scholar
Lubinski, D.J., Polyak, L., Forman, S.L., (2001). Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes. Quaternary Science Reviews 20, 18511879.Google Scholar
MacDonald, G.M, Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A., Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D., Aravena, R., Hammarlund, D., Szeicz, J.M., Gattaulin, V.N., (2000). Holocene treeline history and climate change across northern Eurasia. Quaternary Research 53, 302311.CrossRefGoogle Scholar
Makarevich, P.R., Druzhkov, N.V., Larionov, V.V., Druzhkova, E.I., (2003). The freshwater phytoplankton biomass and its role in the formation of a high productive zone on the Ob-Yenisei shallows (southern Kara Sea). Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.185193.Google Scholar
Mangerud, J., Gulliksen, S., (1975). Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada. Quaternary Research 5, 273296.Google Scholar
Matthiessen, J., Kraus, M., (2001). Distribution of aquatic palynomorphs along the salinity gradient in the Kara Sea. Reports on Polar Research 393, 107109.Google Scholar
Matthiessen, J., Kunz-Pirrung, M., Mudie, P.J., (2000). Freshwater chlorophycean algae in recent marine sediments of the Beaufort, Laptev and Kara Seas (Arctic Ocean) as indicators of river runoff. International Journal of Earth Science 89, 470485.Google Scholar
Meade, R.H, Bobrobitskaya, N.N., Babkin, V.I., (2000). Suspended-sediment and fresh-water discharges in the Ob and Yenisei rivers, 1960–1988. International Journal of Earth Science 89, 461469.CrossRefGoogle Scholar
Nöthig, E.-M., Okolodkov, Y., Larionov, V.V., Makarevich, P.R., (2003). Phytoplankton distribution in the Kara Sea: a composition of three summer investigations. Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.163183.Google Scholar
Pavlidis, Yu.A., Ionin, A.S., Scherbakov, F.A., Dunaev, N.N., Nikiforov, S.L., (1998). Arctic Shelf. Late Quaternary History as a Predicting Base of Future Changing. GEOS, Moscow.Google Scholar
Pfirman, S.L., Colony, R., Nürnberg, D., Eiken, H., Rigor, I., (1997). Reconstructing the origin and trajectory of drifting Arctic sea ice. Journal of Geophysical Research 102, 12.57512.586.Google Scholar
Pivovarov, S.V., Schlitzer, R., Novikhin, A., (2003). River run-off influence on the water mass formation in the Kara Sea. Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.926.Google Scholar
Polyak, L., Levitan, M., Khusid, T., Merklin, L., Mukhina, V., (2002). Variations in the influence of riverine discharge on the Kara Sea during the last deglaciation and the Holocene. Global and Planetary Change 32, 291309.Google Scholar
Polyakova, Ye.I., (1994). Peculiarities of diatom thanatocoenoses formation in the sediments of the Eurasian Arctic seas. Oceanology 34, 405414.(English translation).Google Scholar
Polyakova, Ye.I., (1997). The Eurasian Arctic Seas During the Late Cenozoic. Scientific World, Moscow.In Russian.Google Scholar
Polyakova, Ye.I., (2003). Diatom assemblages in the surface sediments of the Kara Sea (Siberian Arctic) and their relationship to oceanological conditions. Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.375399.Google Scholar
Polyakova, Ye.I., Bauch, H.A., Kassens, H., (2000). Ice-hydrological regime changes in the Late Holocene Laptev Sea. Doklady Earth Sciences 370, 686688.Translated from Doklady Akademii Nauk.Google Scholar
Rachold, V., Eicken, H., Gordeev, V.V., Grigoriev, M.N., Hubberten, H.-W., Lisitzin, A.P., Shevchenko, V.P., Schirrmeister, L., (2003). Modern terrigenous organic carbon input to the Arctic Ocean. Stein, R., Macdonald, R.W., The Organic Carbon Cycle in the Arctic Ocean Springer-Verlag, Berlin.3356.Google Scholar
Schrader, H.-J., Gersonde, R., (1978). Diatoms. Utrecht Micropaleontological Bulletin 17, 129176.Google Scholar
Stein, R., (2000). Circum-Arctic river discharge and its geological record: an introduction. International Journal of Earth Science 89, 447449.Google Scholar
Stein, R., (2001). Lithostratigraphy of gravity cores and correlation with sediment echograph profiles (Akademik Boris Petrov Kara Sea Expeditions 1999 and 2000). Reports on Polar Research 393, 120140.Google Scholar
Stein, R., Fahl, K., (2000). Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways, and sinks. GeoMarine Letters 20, 2736.Google Scholar
Stein, R., Fahl, K., (2003). The Kara Sea: distribution, sources, variability and burial of organic carbon. Stein, R., Macdonald, R.W., The Organic Carbon Cycle in the Arctic Ocean Springer-Verlag, Berlin.237266.Google Scholar
Stein, R., Fahl, K., Dittmers, K., Niessen, F., Stepanets, O.V., (2003). Holocene siliciclastic and organic carbon fluxes in the Ob and Yenisei estuaries and the adjacent inner Kara Sea: quantification, variability, and paleoenvironmental implications. Stein, R., Fahl, K., Fütterer, D.K., Galimov, E.M., Stepanets, O.V., Siberian River Run-off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences vol. 6, Elsevier, Amsterdam.401434.Google Scholar
Stein, R., Dittmers, K., Fahl, K., Kraus, M., Matthiessen, J., Niessen, F., Pirrung, M., Polyakova, Ye., Schoster, F., Steinke, T., Fütterer, D.K., (2004). Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record. Quaternary Science Reviews 23, 14851511.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormic, G., van der Plicht, J., Spurk, M., (1998). INTCAL 98 radiocarbon age calibration, 24000-0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Usachev, P.I., (1968). Phytoplankton of the Kara Sea. Syomina, G.I., Plankton of the Pacific Ocean Nauka, Moscow.628.Google Scholar
Vedernikov, V.I., Demidov, A.B., Sud'bin, A.I., (1995). Primary production and chlorophyll in the Kara Sea in September 1993. Oceanology 34, 630640.(English translation).Google Scholar
Velichko, A.A., Andreev, A.A., Klimanov, V.A., (1997). Climate and vegetation dynamics in the tundra and forest zone during the late glacial and Holocene. Quaternary International 41/42, 7196.Google Scholar
Vorobyeva, G.A., (1994). Paleoclimates around Lake Baikal in Pleistocene and the Holocene. Baikal as a Nature Laboratory for Global Change vol. 2, Lisna Publishers, Irkutsk.5455.Google Scholar
Wolfe, B.B., Edwards, T.W.D., Aravena, R., Forman, S.L., Warner, B.G., Velichko, A.A., MacDonald, G.M., (2000). Holocene paleohydrology and paleoclimate at treeline, North-Central Russia, inferred from oxygen isotope records in lake sediment cellulose. Quaternary Research 53, 319329.Google Scholar
Zakharov, V.F., (1996). Sea Ice in Climatic System. Gidrometizdat, St. Petersburg.In Russian.Google Scholar