Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:45:05.343Z Has data issue: false hasContentIssue false

Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka

Published online by Cambridge University Press:  17 April 2019

Sebastian Wetterich*
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany
Natalia Rudaya
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany Institute of Geology and Petroleum Technologies, Kazan State University, 420008 Kazan, Russia Centre of Cenozoic Geochronology, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
Vladislav Kuznetsov
Affiliation:
Department of Geomorphology, St. Petersburg State University, 199034 St. Petersburg, Russia
Fedor Maksimov
Affiliation:
Department of Geomorphology, St. Petersburg State University, 199034 St. Petersburg, Russia
Thomas Opel
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany Permafrost Laboratory, Department of Geography, University of Sussex, Brighton BN1 9QJ, United Kingdom
Hanno Meyer
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany
Frank Günther
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany Laboratory Geoecology of the North, Faculty of Geography, Lomonosov Moscow State University, 119991 Moscow, Russia
Anatoly Bobrov
Affiliation:
Department of Soil Geography, Faculty of Soil Science, Moscow State University, 119991 Moscow, Russia
Elena Raschke
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany
Heike H. Zimmermann
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany
Jens Strauss
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany
Anna Starikova
Affiliation:
Department of Geomorphology, St. Petersburg State University, 199034 St. Petersburg, Russia
Margret Fuchs
Affiliation:
Helmholtz Institute Freiberg for Ressource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 09599 Freiberg, Germany
Lutz Schirrmeister
Affiliation:
Research Unit Potsdam, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 14473 Potsdam, Germany
*
*Corresponding author e-mail address: sebastian.wetterich@awi.de (S. Wetterich).

Abstract

Late Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a–c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial–Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The data from this study are available at https://www.pangaea.de.

References

REFERENCES

Andreev, A.A., Grosse, G., Schirrmeister, L., Kuzmina, S.A., Novenko, E.Y., Bobrov, A.A., et al. , 2004. Late Saalian and Eemian palaeoenvironmental history of the Bol'shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia). Boreas 33, 319348.Google Scholar
Andreev, A.A., Grosse, G., Schirrmeister, L., Kuznetsova, T.V., Kuzmina, S.A., Bobrov, A. A., Tarasov, P.E., et al. , 2009. Weichselian and Holocene palaeoenvironmental history of the Bolshoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia. Boreas 38, 72110.Google Scholar
Andreev, A.A., Schirrmeister, L., Tarasov, P.E., Ganopolski, A., Brovkin, V., Siegert, C., Wetterich, S., Hubberten, H.-W., 2011. Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during late Quaternary inferred from pollen records. Quaternary Science Reviews 30, 21822199.Google Scholar
Ashastina, K., Schirrmeister, L., Fuchs, M., Kienast, F., 2017. Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands. Climate of the Past 13, 795818.Google Scholar
Beug, H.-J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, Munich.Google Scholar
Beyens, L., Bobrov, A., 2016. Evidence supporting the concept of a regionalized distribution of testate amoebae in the Arctic. Acta Protozoologica 55, 197209.Google Scholar
Blinov, A., Alfimov, V., Beer, J., Gilichinsky, D., Schirrmeister, L., Kholodov, A., Nikolskiy, P., Opel, T., Tikhomirov, D., Wetterich, S., 2009. 36Cl/Cl ratio in ground ice of East Siberia and its application for chronometry. Geochemistry, Geophysics, Geosystems 10, Q0AA03.Google Scholar
Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 12371248.Google Scholar
Bobrov, A.A., Wetterich, S., Beermann, F., Schneider, A., Kokhanova, L., Schirrmeister, L., Pestryakova, L., Herzschuh, U., 2013. Testate amoebae and environmental features of polygon tundra in the Indigirka lowland (East Siberia). Polar Biology 36, 857870.Google Scholar
Brigham-Grette, J., 2013. A fresh look at Arctic ice sheets. Nature Geoscience 6, 807808.Google Scholar
Chadburn, S.E., Burke, E.J., Cox, P.M., Friedlingstein, P., Hugelius, G., Westermann, S., 2017. An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change 7, 340344.Google Scholar
Chardez, D., 1965. Ecologie générale des Thécamoebiens. Bulletin de l'Institut Agronomique et des Stations de Recherche de Gembloux 33, 307341.Google Scholar
Craig, H., 1961. Isotopic variations in meteoric waters. Science 133, 17021703.Google Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436468.Google Scholar
Fægri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. John Wiley and Sons, Chichester, UK.Google Scholar
French, H.M., Shur, Y., 2010. The principles of cryostratigraphy. Earth Science Reviews 101, 190206.Google Scholar
Froese, D.G., Westgate, J.A., Reyes, A.V., Enkin, R.J., Preece, S.J., 2008. Ancient permafrost and a future, warmer Arctic. Science 321, 1648.Google Scholar
Fuchs, M., Schwamborn, G., Walz, J., Wetterich, S., 2015. Permafrost exposures of Bol'shoy Lyakhovsky. Berichte zur Polar- und Meeresforschung 686, 2036.Google Scholar
Ganopolski, A., Calov, R., 2011. The role of orbital forcing, carbon dioxide and regolith in 100 ka glacial cycles. Climate of the Past 7, 14151425.Google Scholar
Geyh, M.A., 2001. Reflections on the 230Th/U dating of dirty material. Geochronometria 20, 914.Google Scholar
Geyh, M.A., Müller, H., 2005. Numerical 230Th/U dating and palynological review of the Holsteinian/Hoxnian Interglacial. Quaternary Science Reviews 24, 18611872.Google Scholar
Grimm, E.C., 2004. TGView 2.0.2 (Software). Illinois State Museum, Springfield, IL.Google Scholar
Günther, F., Overduin, P.P., Sandakov, A. V., Grosse, G., Grigoriev, M.N., 2013. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 10, 42974318.Google Scholar
Kaplina, T.N., 2009. Alasnye kompleksy severnoi Yakutii [Alas complexes of northern Yakutia]. Kriosfera Zemli 13, 317.Google Scholar
Kaplina, T.N., 2011. Drevnye alasnye kompleksy severnoi Yakutii [Ancient alas complexes of northern Yakutia – Part 1]. Kriosfera Zemli 15, 313.Google Scholar
Kaufman, A., Broecker, W.S., 1965. Comparison of Th230 and C14 ages for carbonates materials from Lakes Lahontan and Bonneville. Journal of Geophysical Research 70, 40304042.Google Scholar
Kienast, F., Schirrmeister, L., Siegert, C., Tarasov, P., 2005. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quaternary Research 63, 283300.Google Scholar
Kienast, F., Tarasov, P., Schirrmeister, L., Grosse, G., Andreev, A.A., 2008. Continental climate in the East Siberian Arctic during the last interglacial: implications from palaeobotanical records. Global and Planetary Change 60, 535562.Google Scholar
Kienast, F., Wetterich, S., Kuzmina, S., Schirrmeister, L., Andreev, A.A., Tarasov, P., Nazarova, L., Kossler, A., Frolova, L., Kunitsky, V. V., 2011. Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the last interglacial. Quaternary Science Reviews 30, 21342159.Google Scholar
Konishchev, V.N., 2013. The nature of cyclic structure of the Ice Complex, East Siberia. Geography Environment Sustainability 6, 420.Google Scholar
Kuprianova, L.A., Alyoshina, L.A., 1972. Pyl`za i spory rastenii flory Evropeiskoi chasti SSSR [Pollen and spores of the flora of the European part of the USSR]. Nauka, Leningrad.Google Scholar
Kuznetsov, V.Y., Maksimov, F.E., 2012. Metody chetvertichnoi geohronometrii v palaeogeografii i morskoi geologii [Methods of Quaternary geochronometry in palaeogeography and marine geology]. Nauka, St. Petersburg.Google Scholar
Leffingwell, E. de K., 1915. Ground-ice wedges: the dominant form of ground-ice on the north coast of Alaska. Journal of Geology 23, 635654.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Maksimov, F.E., Kuznetsov, V.Y., 2010. Novaya versiya 230Th/U datirovaniya verkhne- i sredneneoplaeistotsenovykh pogrebennykh organogennykh otlozhenii [New version of 230Th/U dating of the Upper and Middle Pleistocene buried organogenic sediments]. Vestnik SPBGU [Bulletin of the St. Petersburg State University, Series] 7, 103–114.Google Scholar
Maksimov, F.E., Kuznetsov, V.Y., Zaretskaya, N.E., Subetto, D.A., Shebotinov, V.V., Zherebtsov, I.E., 2011. The first case study of 230Th/U and 14C dating of Mid-valdai organic deposits. Doklady Earth Sciences 438, 598602.Google Scholar
Meyer, H., Dereviagin, A.Y., Siegert, C., Hubberten, H.-W., 2002a. Paleoclimate studies on Bykovsky Peninsula, North Siberia-hydrogen and oxygen isotopes in ground ice. Polarforschung 70, 3751.Google Scholar
Meyer, H., Dereviagin, A.Y., Siegert, C., Schirrmeister, L., Hubberten, H.-W., 2002b. Paleoclimate reconstruction on Big Lyakhovsky Island, North Siberia—hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13, 91105.Google Scholar
Meyer, H., Schönicke, L., Wand, U., Hubberten, H.-W., Friedrichsen, H., 2000. Isotope studies of hydrogen and oxygen in ground ice – experiences with the equilibration technique. Isotopes in Environmental and Health Studies 36, 133149.Google Scholar
Morgenstern, A., Grosse, G., Günther, F., Fedorova, I., Schirrmeister, L., 2011. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere 5, 849867.Google Scholar
Murton, J.B., Edwards, M.E., Lozhkin, A.V., Anderson, P.M., Savvinov, G.N., Bakulina, N., Bondarenko, O.V., et al. , 2017. Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. Quaternary Research 87, 314330.Google Scholar
Nikolskiy, P.A., Basilyan, A.E., 2004. Mys Svyatoi Nos - Opornyi razrez chetvertichnykh otlozhenii severa Yana-Indigiskoi nizmenosti [Mys Svyatoi Nos a Quaternary key section of the northern Yana-Indigirka lowland]. In: Nikolskiy, P.A., Pitul'ko, V.V. (Eds.), Estestvenaya istoriya rossiskoi vostochnoi Arktiki v pleistotsene i golotsene [Natural history of the Russian Eastern Arctic during the Pleistocene and Holocene]. GEOS, Moscow, pp. 513.Google Scholar
Nikolskiy, P.A., Basilyan, A.E., Sulerzhitsky, L.D., Pitulko, V.V., 2010. Prelude to the extinction: revision of the Achchagyi–Allaikha and Berelyokh mass accumulations of mammoth. Quaternary International 219, 1625.Google Scholar
Niessen, F., Hong, J.K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H., Kim, S., Jensen, L., Jokat, W., Nam, S.-I., Kang, S.-H., 2013. Repeated Pleistocene glaciation of the East Siberian continental margin. Nature Geoscience 6, 842846.Google Scholar
Nikolskiy, P.A., Basilyan, A.E., Zazhigin, V.S., 2017. New Data on the age of the glaciation in the New Siberian Islands (Russian Eastern Arctic). Doklady Earth Sciences 475, 748752.Google Scholar
Opel, T., Dereviagin, A., Meyer, H., Schirrmeister, L., Wetterich, S., 2011. Paleoclimatic information from stable water isotopes of Holocene ice wedges at the Dmitrii Laptev Strait (Northeast Siberia). Permafrost and Periglacial Processes 22, 84100.Google Scholar
Opel, T., Wetterich, S., Meyer, H., Dereviagin, A.Y., Fuchs, M.C., Schirrmeister, L., 2017. Ground-ice stable isotopes at the Oyogos Yar Coast (Dmitry Laptev Strait) – indications for Late Quaternary paleoclimate in the Northeast Siberian Arctic. Climate of the Past 13, 587611.Google Scholar
Past Interglacials Working Group of PAGES, 2016. Interglacials of the last 800,000 years. Reviews of Geophysics 54, 162219.Google Scholar
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., Rahmstorf, S., 2000. CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Climate Dynamics 16, 117.Google Scholar
Reyes, A.V., Froese, D.G., Jensen, B.J., 2010. Response of permafrost to last interglacial warming: field evidence from non-glaciated Yukon and Alaska. Quaternary Science Reviews 29, 32563274.Google Scholar
Romanovskii, N.N., 1993. Osnovy kriolitogeneza litosfery [Basic concepts of cryogenesis in the lithosphere]. Moscow University Press, Moscow.Google Scholar
Schennen, S., Tronicke, J., Wetterich, S., Allroggen, N., Schwamborn, G., Schirrmeister, L., 2016. 3D ground-penetrating radar imaging of ice complex deposits in northern east Siberia. Geophysics 81, 19.Google Scholar
Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G., Wetterich, S., 2013. Yedoma: late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias, S.A. (Ed.), The Encyclopedia of Quaternary Science. Vol. 3. 2nd ed. Elsevier, Amsterdam, pp. 542552.Google Scholar
Schirrmeister, L., Grosse, G., Kunitsky, V.V., Siegert, C., 2017a. Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site R8 + 50. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.880951.Google Scholar
Schirrmeister, L., Grosse, G., Kunitsky, V.V., Siegert, C., 2017b. Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site R14 + 40. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.880943.Google Scholar
Schirrmeister, L., Grosse, G., Kunitsky, V.V., Siegert, C., 2017c. Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site R17. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.880944.Google Scholar
Schirrmeister, L., Grosse, G., Kunitsky, V.V., Siegert, C., 2017d. Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site R17 + 30. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.880945.Google Scholar
Schirrmeister, L., Grosse, G., Kunitsky, V.V., Siegert, C., 2017e. Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site 1TZ. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.880929.Google Scholar
Schirrmeister, L., Grosse, G., Kunitsky, V.V., Siegert, C., 2017f. Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site 2TZ. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.880930.Google Scholar
Schirrmeister, L., Grosse, G., Kunitsky, V.V., Siegert, C., 2017g. Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site 3TZ. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.880931.Google Scholar
Schirrmeister, L., Kunitsky, V. V., Grosse, G., Wetterich, S., Meyer, H., Schwamborn, G., Babiy, O., Derevyagin, A. Y., Siegert, C., 2011. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North-East Siberian Arctic coastal lowlands and islands – a review. Quaternary International 241, 325.Google Scholar
Schirrmeister, L., Oezen, D., Geyh, M.A., 2002. 230Th/U dating of frozen peat, Bol'shoy Lyakhovsky Island (North Siberia). Quaternary Research 57, 253258.Google Scholar
Schirrmeister, L., Wetterich, S., Tumskoy, V., Dobrynin, D., 2008. Palaeoenvironmental studies on Bol'shoy Lyakhovsky Island. Berichte zur Polar- und Meeresforschung 584, 5181.Google Scholar
Schwamborn, G., Wetterich, S., 2016a. Characteristics of samples obtained during the expedition to Bolshoy Lyakhovsky Island in July/August 2014. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.859265.Google Scholar
Schwamborn, G., Wetterich, S., 2016b. Geochemistry and physical properties of permafrost core L14-02. PANGAEA (accessed 4 April 2018). https://doi.org/10.1594/PANGAEA.868978.Google Scholar
Shur, Y.L., Jorgenson, M.T., 2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost and Periglacial Processes 18, 719.Google Scholar
Solov'ev, P.A., 1959. Kriolitozona severnoi chasti Leno-Amginskogo mezhdurech'ya [The cryolithozone in the northern part of the Lena-Amga-Interfluve]. Publications of the USSR Academy of Science, Moscow, Russia, 144 p. (in Russian).Google Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M., Hubberten, H.-W., 2013. The deep permafrost carbon pool of the Yedoma region in Siberian and Alaska. Geophysical Research Letters 40, 61656170.Google Scholar
Tarasov, L., Peltier, W.R., 2007. Coevolution of continental ice cover and permafrost extent over the last glacial-interglacial cycle in North America. Journal of Geophysical Research 112, F02S08.Google Scholar
Throckmorton, H. M., Newman, B. D., Heikoop, J.M., Perkins, G.B., Feng, X., Graham, D. E., O'Malley, D., et al. , 2016. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrological Processes 30, 49724986.Google Scholar
Tolmachev, A.I., Yurtsev, V.A. (Eds.), 1966. Arkticheskaya flora SSSR [Arctic flora of the USSR]. Vol. 3, Cyperaceae. Nauka, Moscow.Google Scholar
Tumskoy, V.E., 2012. Osobennosti kriolitogeneza otlozhenii severnoi Yakutii v srednem Neopleistotsene-Golotsene [Peculiarities of cryolithogenesis in northern Yakutia from the Middle Neopleistocene to the Holocene]. Kriosfera Zemli 16, 1221.Google Scholar
van Geel, B., 2001. Non-pollen palynomorphs. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Changes Using Lake Sediments, Vol. 3. Kluwer Academic, Dordrecht, the Netherlands, pp. 99119.Google Scholar
Wetterich, S., Rudaya, N., Tumskoy, V., Andreev, A.A., Opel, T., Schirrmeister, L., Meyer, H. 2011. Last Glacial Maximum records in permafrost of the East Siberian Arctic. Quaternary Science Reviews 30, 31393151.Google Scholar
Wetterich, S., Schirrmeister, L., Andreev, A.A., Pudenz, M., Plessen, B., Meyer, H., Kunitsky, V.V., 2009. Eemian and Late Glacial/Holocene palaeoenvironmental records from permafrost sequences at the Dmitry Laptev Strait (NE Siberia, Russia). Paleogeography, Paleoclimatology, Paleoecology 279, 7395.Google Scholar
Wetterich, S., Tumskoy, V., Rudaya, N., Andreev, A.A., Opel, T., Meyer, H., Schirrmeister, L., 2014. Ice Complex formation in arctic East Siberia during the MIS3 Interstadial. Quaternary Science Reviews 84, 3955.Google Scholar
Wetterich, S., Tumskoy, V., Rudaya, N., Kuznetsov, V., Maksimov, F., Opel, T., Meyer, H., Andreev, A.A., Schirrmeister, L., 2016. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quaternary Science Reviews 147, 298311.Google Scholar
Willeit, M., Ganopolski, A., 2015. Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle. Climate of the Past 11, 11651180.Google Scholar
Zimmermann, H.H., Raschke., E., Epp, L.S., Stoof-Leichsenring, K.R., Schirrmeister, L., Schwamborn, G., Herzschuh, U., 2017. The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the last interglacial uncovered by sedimentary ancient DNA and pollen data. Genes 8, 273.Google Scholar
Supplementary material: PDF

Wetterich et al. supplementary material

Wetterich et al. supplementary material 1

Download Wetterich et al. supplementary material(PDF)
PDF 535.9 KB
Supplementary material: PDF

Wetterich et al. supplementary material

Wetterich et al. supplementary material 2

Download Wetterich et al. supplementary material(PDF)
PDF 424.5 KB
Supplementary material: PDF

Wetterich et al. supplementary material

Wetterich et al. supplementary material 3

Download Wetterich et al. supplementary material(PDF)
PDF 295.7 KB
Supplementary material: PDF

Wetterich et al. supplementary material

Wetterich et al. supplementary material 4

Download Wetterich et al. supplementary material(PDF)
PDF 744 KB