Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T11:23:18.912Z Has data issue: false hasContentIssue false

The impact of climate changes during the Holocene on vegetation in northern French Guiana

Published online by Cambridge University Press:  20 January 2017

Vincent Freycon*
Affiliation:
CIRAD, UR Dynamique forestière, Campus de Baillarguet, TA C-37, F-34398 Montpellier cedex 5, France
Marion Krencker
Affiliation:
Université de Strasbourg, LIVE, ERL 7230, 3 rue de l'Argonne, F-67083 Strasbourg cedex, France
Dominique Schwartz
Affiliation:
Université de Strasbourg, LIVE, ERL 7230, 3 rue de l'Argonne, F-67083 Strasbourg cedex, France
Robert Nasi
Affiliation:
CIFOR, P.O. Box 0113 BOCBD, I-16000 Bogor, Indonesia
Damien Bonal
Affiliation:
INRA, UMR Ecofog, BP 709, F-97387 Kourou cedex, French Guiana
*
*Corresponding author. Fax: +33 4 67 59 37 33.E-mail address:vincent.freycon@cirad.fr (V. Freycon).

Abstract

The impact of climatic changes that occurred during the last glacial maximum and the Holocene on vegetation changes in the Amazon Basin and the Guiana Shield are still widely debated. The aim of our study was to investigate whether major changes in vegetation (i.e. transitions between rainforests and C4 savannas) occurred in northern French Guiana during the Holocene. We measured variations in the ä13C of soil organic matter at eight sites now occupied by forest or savannah. The forest sites were selected to cover two regions (forest refugia and peneplains) which are thought to have experienced different intensities of disturbance during the latest Pleistocene and the Holocene. We found that none of the forest sites underwent major disturbances during the Holocene, i.e. they were not replaced by C4 savannahs or C4 forest savannahs for long periods. Our results thus suggest that tropical rainforests in northern French Guiana were resilient to drier climatic conditions during the Holocene. Nevertheless, geographical and vertical variations in the 13C of SOM were compatible with minor changes in vegetation, variations in soil processes or in soil physical properties.

Type
Short paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., Soubies, F., Suguio, K., Turcq, B., Van Der Hammen, T., (1991). Occurrence of four episodes of rain forest regression in southeastern Amazonia during the last 60,000 yrs. First comparison with other tropical regions.. Comptes Rendus Acad"mie des Sciences Paris 312, 673678.Google Scholar
Behling, H., (1996). First report on new evidence for the occurrence of Podocarpus and possible human presence at the mouth of the Amazon during the Late-Glacial. Vegetation History and Archaeobotany 5, 241246.CrossRefGoogle Scholar
Bonal, D., Sabatier, D., Montpied, P., Tremeaux, D., Guehl, J.M., (2000). Interspecific variability of ?13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124, 454468.CrossRefGoogle ScholarPubMed
Boulet, R., (1990). Organisation des couvertures p"dologiques des bassins versants ECEREX. Hypoth"ses sur leur dynamique. Sarrailh, J.M., Mise en valeur de l'"cosyst"me forestier guyanais. Op"ration ECEREX. INRA, CTFT, Paris, Nogent-sur-Marne., 1545.Google Scholar
Boutton, T.W., (1996). Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. Boutton, T.W., Yamasaki, S., Mass Spectrometry of Soils. Dekker, New-York., 4782.Google Scholar
Carneiro, F.A., Schwartz, D., Tatumi, S.H., Rosique, T., (2002). Amazonian paleodunes provide evidence for drier climate phases during the late Pleistocene"Holocene. Quaternary Research 58, 205209.Google Scholar
Charles-Dominique, P., Blanc, P., Larpin, D., Ledru, M.P., Riera, B., Sarthou, C., Servant, M., Tardy, C., (1998). Forest perturbations and biodiversity during the last ten thousand years in French Guiana. Acta Oecologica 19, 295302.CrossRefGoogle Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., (1996). A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science 274, 8588.CrossRefGoogle Scholar
de Camargo, P.B., Trumbore, S.E., Martinelli, L.A., Davidson, E.A., Nepstad, D.C., Victoria, R.L., (1999). Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology 5, 693702.CrossRefGoogle Scholar
Delegue, M.A., Fuhr, M., Schwartz, D., Mariotti, A., Nasi, R., (2001). Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129, 106113.CrossRefGoogle ScholarPubMed
Desjardins, T., Volkoff, B., Andreux, F., Cerri, C.C., (1991). Distribution du carbone total et de l'isotope 13C dans les sols ferrallitiques du Br"sil. Science du sol 29, 175187.Google Scholar
Desjardins, T., Filho, A.C., Mariotti, A., Chauvel, A., Girardin, C., (1996). Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by isotope ratios of organic carbon. Oecologia 108, 749756.CrossRefGoogle ScholarPubMed
Dutech, C., Maggia, L., Tardy, C., Joly, H.I., Jarne, P., (2003). Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana aublet in French Guiana. Evolution 57, 27532764.Google Scholar
Ehleringer, J.R., Dawson, T.E., (1992). Water uptake by plants: perspectives from stable isotope composition. Plant, Cell and Environment 15, 10731082.CrossRefGoogle Scholar
Farquhar, G.D., Richards, R.A., (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology 11, 539552.Google Scholar
Freitas de, H.A., Pessenda, L.C.R., Aravena, R., Gouveia, S.E.M., Ribeiro, A.D., Boulet, R., (2001). Late Quaternary vegetation dynamics in the southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55, 3946.CrossRefGoogle Scholar
Granville de, J.J., (1982). Rain forest and xeric flora refuges in French Guiana. Prance, G.T., Biological Diversification in the Tropics. Columbia University Press, Caracas, Venezuela., 159181.Google Scholar
Groussin, J., (2001). Le climat guyanais. Barret, J., Atlas illustr" de la Guyane. CNES, IESG, IRD, R"gion Guyane, Limoges. Google Scholar
Guillet, B., (1994). L'abondance naturelle des isotopes du carbone comme moyen d'"tude de l'"ge, du renouvellement et de l'origine des mati"res organiques des sols. Bonneau, M., Souchier, B., P"dologie. Tome 2: Constituants et propri"t"s du sol. Masson, Paris, 297315.Google Scholar
Guillet, B., Achoundong, G., Happi, J.Y., Beyala, V.K.K., Bonvallot, J., Riera, B., Mariotti, A., Schwartz, D., (2001). Agreement between floristic and soil organic carbon isotope (C-13/C-12, C-14) indicators of forest invasion of savannas during the last century in Cameroon.. Journal of Tropical Ecology 17, 809832.CrossRefGoogle Scholar
Hammond, D.S., ter Steege, H., van der Borg, K., (2006). Upland soil charcoal in the wet tropical forests of Central Guyana. Biotropica 39, 153160.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Hoock, J., (1971). "Les savanes guyanaises: Kourou. Essai de phytologie num"rique." ORSTOM, Paris. Google Scholar
Hooghiemstra, H., van der Hammen, T., (1998). Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-Science Reviews 44, 147183.CrossRefGoogle Scholar
(2006). IUSS Working Group WRB. World Reference Base for Soil Resources 2006. FAO, Rome. Google Scholar
Ledru, M.P., (2001). Late Holocene rainforest disturbance in French Guiana. Review of Palaeobotany and Palynology 115, 161176.CrossRefGoogle ScholarPubMed
Malhi, Y., Wood, D., Baker, T.R., Wright, J., Phillips, O.L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Monteagudo, A., Neill, D.A., Vargas, P.N., Pitman, N.C.A., Quesada, C.A., Salomao, R., Silva, J.N.M., Lezama, A.T., Terborgh, J., Martinez, R.V., Vinceti, B., (2006). The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology 12, 11071138.CrossRefGoogle Scholar
Martinelli, L.A., Almeida, S., Brown, I.F., Moreira, M., Victoria, R.L., Sternberg, L., Ferreira, C.A.C., Thomas, W.W., (1998). Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondonia, Brazil. Oecologia 114, 170179.CrossRefGoogle Scholar
Mayle, F.E., Power, M.J., (2008). Impact of a drier Early"Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B-Biological Sciences 363, 18291838.CrossRefGoogle ScholarPubMed
Mooney, H.A., Bullock, S.H., Ehleringer, J.B., (1989). Carbon isotope ratios of plants of a tropical dry forest in Mexico. Functional Ecology 3, 137142.CrossRefGoogle Scholar
Nadelhoffer, K.J., Fry, B., (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal 52, 16331640.CrossRefGoogle Scholar
Newbery, D.M., Lingenfelder, M., (2009). Plurality of tree species responses to drought perturbation in Bornean tropical rain forest. Plant Ecology 201, 147167.CrossRefGoogle Scholar
Paget, D., (1999). "Etude de la diversit" spatiale des "cosyst"mes forestiers guyanais: R"flexion m"thodologique et application." PhD thesis. ENGREF, pp. 151.Google Scholar
Pessenda, L.C.R., Gomes, M.B.M., Aravena, R., Ribeiro, A.S., Boulet, R., Gouveia, S.E.M., (1998). The carbon isotope record in soils along a forest-cerrado ecosystem transect: implication for vegetation changes in Rondonia State, southwestern Brazilian Amazon region. Holocene 8, 631635.CrossRefGoogle Scholar
Pessenda, L.C.R., Boulet, R., Aravena, R., Rosolen, V., Gouveia, S.E.M., Ribeiro, A.S., Lamotte, M., (2001). Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region.. Holocene 11, 250254.CrossRefGoogle Scholar
Sabatier, D., Grimaldi, M., Pr"vost, M.-F., Guillaume, J., Godron, M., Dosso, M., Curmi, P., (1997). The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecology 131, 81108.CrossRefGoogle Scholar
Sanaiotti, T.M., Martinelli, L.A., Victoria, R.L., Trumbore, S.E., Camargo, P.B., (2002). Past vegetation changes in Amazon savannas determined using carbon isotopes of soil organic matter. Biotropica 34, 216.CrossRefGoogle Scholar
Schwartz, D., Mariotti, A., Trouve, C., Van den Borg, K., Guillet, B., (1992). A study of 13C and 14C isotopic profiles in a sandy ferralitic soil in the Congolese coastal area. Implications concerning soil organic matter dynamics and vegetation history. Comptes Rendus Acad"mie des Sciences Paris t. 315, 14111417.Google Scholar
Slik, J.W.F., (2004). El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141, 114120.CrossRefGoogle ScholarPubMed
Sobrado, M.A., Ehleringer, J.B., (1997). Leaf carbon isotope ratios from a tropical dry forest in Venezuela. Flora 192, 121124.CrossRefGoogle Scholar
Suess, H.E., (1955). Radiocarbon concentration in modern wood. Science 122, 415417.CrossRefGoogle Scholar
Tardy, C., (1998). "Pal"oincendies naturels, feux anthropiques et environnements forestiers de Guyane Fran"aise du tardiglaciaire " l'holoc"ne r"cent: approches chronologique et anthracologique." PhD thesis. Universit" Montpellier II, pp. 321.Google Scholar
Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.F., Prevost, M.F., Spichiger, R., Castellanos, H., von Hildebrand, P., Vasquez, R., (2006). Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444447.CrossRefGoogle ScholarPubMed
Trumbore, S., (2000). Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10, 399411.CrossRefGoogle Scholar
Van der Hammen, T., (1963). A palynological study of the Quaternary of British Guiana. Leidse Geologische Mededelingen 29, 125180.Google Scholar
Van der Hammen, T., (1974). The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1, 326.CrossRefGoogle Scholar
Wynn, J.G., Bird, M.I., Wong, V.N.L., (2005). Rayleigh distillation and the depth profile of C-13/C-12 ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia. Geochimica Et Cosmochimica Acta 69, 19611973.CrossRefGoogle Scholar