Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T17:46:14.508Z Has data issue: false hasContentIssue false

Inception of the Northern European ice sheet due to contrasting ocean and insolation forcing

Published online by Cambridge University Press:  20 January 2017

Bjørg Risebrobakken*
Affiliation:
Bjerknes Centre for Climate Research, Allégaten 55, 5007 Bergen, Norway Department of Earth Science, University of Bergen, Allégaten 41, 5007 Bergen, Norway
Trond Dokken
Affiliation:
Bjerknes Centre for Climate Research, Allégaten 55, 5007 Bergen, Norway
Odd Helge Otterå
Affiliation:
Bjerknes Centre for Climate Research, Allégaten 55, 5007 Bergen, Norway Nansen Environmental and Remote Sensing Centre, Thormøhlensgt. 47, 5006 Bergen, Norway
Eystein Jansen
Affiliation:
Bjerknes Centre for Climate Research, Allégaten 55, 5007 Bergen, Norway Department of Earth Science, University of Bergen, Allégaten 41, 5007 Bergen, Norway
Yongqi Gao
Affiliation:
Bjerknes Centre for Climate Research, Allégaten 55, 5007 Bergen, Norway Nansen Environmental and Remote Sensing Centre, Thormøhlensgt. 47, 5006 Bergen, Norway
Helge Drange
Affiliation:
Bjerknes Centre for Climate Research, Allégaten 55, 5007 Bergen, Norway Nansen Environmental and Remote Sensing Centre, Thormøhlensgt. 47, 5006 Bergen, Norway
*
Corresponding author. Bjerknes Centre for Climate Research, Allégaten 55, N-5007 Bergen, Norway. Fax: +47 55584330. E-mail address:bjorg.risebrobakken@bjerknes.uib.no (B. Risebrobakken).

Abstract

About 115,000 yr ago the last interglacial reached its terminus and nucleation of new ice-sheet growth was initiated. Evidence from the northernmost Nordic Seas indicate that the inception of the last glacial was related to an intensification of the Atlantic Meridional Overturning Circulation (AMOC) in its northern limb. The enhanced AMOC, combined with minimum Northern hemisphere insolation, introduced a strong sea–land thermal gradient that, together with a strong wintertime latitudinal insolation gradient, increased the storminess and moisture transport to the high Northern European latitudes at a time when the Northern hemisphere summer insolation approached its minimum.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, C., Risebrobakken, B., Jansen, E., and Dahl, S.O. Late Holocene surface–ocean conditions of the Norwegian Sea (Vøring Plateau). Paleoceanography 18, (2003). 1044 doi:http://dx.doi.org/10.1029/2001PA000654Google Scholar
Baumann, K.-H., Lackschewitz, K.S., Mangerud, J., Spielhagen, R., Wolf-Welling, T.C.W., Henrich, R., and Kassens, H. Reflection of Scandinavian Ice Sheet Fluctuations in Norwegian Sea Sediment during the past 150,000 years. Quaternary Research 43, (1995). 185197.CrossRefGoogle Scholar
Bentsen, M., (2002). Modelling Ocean Climate Variability of the North Atlantic and the Nordic Seas. PhD thesis, Department of Mathematics and Nansen Environmental and Remote Sensing Centre, Bergen, Norway.Google Scholar
Bentsen, M., Evensen, G., Drange, H., and Jenkins, A.D. Coordinate transformation on a sphere using conformal mapping. Monthly Weather Review 127, (1999). 27332740.2.0.CO;2>CrossRefGoogle Scholar
Bleck, R., Rooth, C., Hu, D., and Smith, L.T. Salinity-driven thermohaline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. Journal of Physical Oceanography 22, (1992). 14861515.2.0.CO;2>CrossRefGoogle Scholar
Blindheim, J., Borovkov, V., Hansen, B., Malmberg, S.A., Turrell, W.R., and Østerhus, S. Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing. Deep-Sea Research I 47, (2000). 655680.Google Scholar
Bonan, G.B., Pollard, D., and Thompson, S.L. Effects of boreal forest vegetation on global climate. Nature 359, (1992). 716718.CrossRefGoogle Scholar
Chapman, M.R., and Shackleton, N.J. Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 ka. Geology 27, (1999). 795798.Google Scholar
Cortijo, E., Duplessy, J.C., Labeyrie, L., Leclaire, H., Duprat, J., and van Weering, T.C.E. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, (1994). 446449.Google Scholar
Crucifix, M., and Loutre, M.F. Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis. Climate Dynamics 19, (2002). 417433.Google Scholar
Dickson, R.R., Osborne, T.J., Hurrell, J.W., Meincke, J., Blindheim, J., Adlandsvik, B., Vinje, T., Alekseev, G., and Maslowski, W. The Arctic Ocean response to the North Atlantic oscillation. Journal of Climate 13, (2000). 26712696.2.0.CO;2>CrossRefGoogle Scholar
Drange, H., and Simonsen, K. Formulation of air–sea fluxes in the ESOP2 version of MICOM. Technical Report Nansen Environmental and Remote Sensing 125, (1996). Google Scholar
Duplessy, J.C., and Shackleton, N.J. Response of global deep-water circulation to Earth's climatic change 135,000–107,000 years ago. Nature 316, (1985). 500507.CrossRefGoogle Scholar
Funder, S., Demidov, I., and Yelovicheva, Y. Hydrography and mollusc of the Baltic and the White Sea-North Sea seaway in the Eemian. Palaeogeography, Palaeoclimatology, Palaeoecology 184, (2002). 275304.Google Scholar
Furevik, T., Bentsen, M., Drange, H., Johannessen, J.A., and Korablev, A. Temporal and spatial variability of the sea surface salinity in the Nordic Seas. Journal of Geophysical (2002). 107 doi:http://dx.doi.org/10.1029/2001JC001118Google Scholar
Hald, M., Ebbesen, H., Forwick, M., Godtliebsen, F., Khomenko, L., Korsun, S., Ringstad Olsen, L., and Vorren, T.O. Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23, (2004). 20752088.CrossRefGoogle Scholar
Harder, M., (1996). Dynamik, Rauhigkeit und Alter des Meereises in der Arktis. PhD thesis, Alfred Wegner Institut für Polar- und Meeresforsch., Bremerhaven, Germany.Google Scholar
Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., and Toggweiler, J.R. On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7, (1992). 701738.Google Scholar
Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., and Toggweiler, J.R. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography 8, (1993). 699735.CrossRefGoogle Scholar
Johannessen, T., Jansen, E., Flatøy, A., and Ravelo, A.C. The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian Seas. Zahn, R., Kominski, M., and Labyrie, L. Carbon Cycling in Glacial Ocean: Constraints on the Ocean's Role in Global Change. (1994). Springer-Verlag, New York. 6185. NATO ASI Series Google Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, (1996). 437471.Google Scholar
Kutzbach, J.E., and Gallimore, R.G. Sensitivity of a coupled atmosphere/mixed layer ocean model to changes in orbital forcing at 9000 years B.P.. Journal of Geophysical Research 93, (1988). 803821.Google Scholar
Laskar, J. The chaotic motion of the solar system: a numerical estimate of the chaotic zones. Icarus 88, (1990). 266291.Google Scholar
Levitus, S., and Boyer, T.P. World Ocean Atlas 1994, NOAA Atlas NESDIS 4. Temperature vol. 4, (1994). US Gov. Printing Office, Washington D.C., USA Google Scholar
Levitus, S., Burgett, R., and Boyer, T.P. World Ocean Atlas 1994, NOAA Atlas NESDIS 3. Salinity vol. 3, (1994). US Gov. Printing Office, Washington D.C., USA Google Scholar
Loeng, H., Ozhigin, V., and Ådlandsvik, B. Water fluxes through the Barents Sea. ICES Journal of Marine research 54, (1997). 310317.CrossRefGoogle Scholar
Mangerud, J., Dokken, T., Hebbeln, D., Heggen, B., Ingólfsson, Ó., Landvik, J.Y., Mejdahl, V., Svendsen, J.I., and Vorren, T.O. Fluctuations of the Svalbard–Barents sea ice sheet during the last 150 000 years. Quaternary Science Reviews 17, (1998). 1142.Google Scholar
Mangerud, J., Svendsen, J.I., and Astakhov, V.I. Age and extent of the Barents and Kara ice sheets in Northern Russia. Boreas 28, (1999). 4680.Google Scholar
Manley, T.O. Branching of Atlantic Water within the Greenland-Spitsbergen passage: An estimate of recirculation. Journal of Geophysical Research 100, (1995). 2062720634.CrossRefGoogle Scholar
McManus, J.F., Oppo, D.W., Keigwin, L.D., Cullen, J.L., and Bond, G.C. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quaternary Research 58, (2002). 1721.Google Scholar
Nilsen, J.E.Ø., Gao, Y., Drange, H., Furevik, T., and Bentsen, M. Simulated North Atlantic-Nordic Seas water mass exchanges in an isopycnic coordinate OGCM. Geophysical Research Letters 30, (2003). 1531 doi:http://dx.doi.org/10.1029/2002GL016597Google Scholar
NOAA. (1988). Data Announcement 88-Mgg-02, Digital relief of the surface of the Earth. Tech. Rep., NOAA, National Geophysical Data Centre, Boulder, Colorado, USA.Google Scholar
Otterå, O.H., and Drange, H. Effects of solar irradiance forcing on the ocean circulation in the North Atlantic in an isopycnic coordinate OGCM. Tellus Series A-Dynamic Meteorology and Oceanography 56, (2004). 154166.Google Scholar
Quadfasel, D., Gascard, J.-C., and Koltermann, K.-P. Large-scale oceanography in fram strait during the 1984 marginal ice zone experiment. Journal of Geophysical Research 92, (1987). 67289719.Google Scholar
Raukas, A. Eemian interglacial record in the Northwestern European part of the Soviet Union. Quaternary International 10–12, (1991). 183189.Google Scholar
Raymo, M.E., and Nisancioglu, K. The 41 kyr world: Milankovitch's other unsolved mystery. Paleoceanography 18, (2003). 1011 Google Scholar
Risebrobakken, B., Dokken, T., and Jansen, E. The extent and variability of the meridional Atlantic circulation in the Nordic Seas during marine isotope stage 5 and its influence on the inception of the last glacial. Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W.H. The Nordic Seas: An Integrated Perspective. AGU Geophysical Monograph vol. 158, (2005). 323339.Google Scholar
Ruddiman, W.F., and McIntyre, A. Warmth of the subpolar North Atlantic Ocean during Northern hemisphere ice-sheet growth. Science 204, (1979). 173175.Google Scholar
Sirocko, F., Seelos, K., Schaber, K., Rein, B., Dreher, F., Diehl, M., Lehne, R., Jëger, K., Krbetschek, M., and Degering, D. A late Eemian aridity pulse in central Europe during the last glacial inception. Nature 436, (2005). 833836.CrossRefGoogle ScholarPubMed
Stirling, C.H., Esat, T.M., Lambeck, K., and McCulloch, M.T. Timing and duration of the last interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters 160, (1998). 745762.CrossRefGoogle Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, G., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingólfsson, Ó., Jakobsson, M., Kjær, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Nisessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F., and Stein, R. Late Quaternary ice sheet history of Northern Eurasia. Quaternary Science Reviews 23, (2004). 12291271.Google Scholar