Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:59:52.909Z Has data issue: false hasContentIssue false

A lacustrine sedimentary record of Holocene periglacial activity from the Uinta Mountains, Utah, U.S.A.

Published online by Cambridge University Press:  20 January 2017

Jeffrey S. Munroe*
Affiliation:
Geology Department, Middlebury College, Middlebury, VT 05753, USA
Catherine M. Klem
Affiliation:
Geology Department, Middlebury College, Middlebury, VT 05753, USA
Matthew F. Bigl
Affiliation:
Geology Department, Middlebury College, Middlebury, VT 05753, USA
*
*Corresponding author. Fax: + 1 802 443 2072. E-mail address:jmunroe@middlebury.edu (J.S. Munroe).

Abstract

A lake sediment core from the Uinta Mountains of northern Utah was analyzed to constrain the timing of late Holocene periglacial activity. Records of numerous physical properties were converted to time series spanning the past 5300 years using a depth-age model based on four AMS 14C dates. Long-term decreases in organic content and increases in bulk density attest to increasing inputs of clastic sediment. Abundance of mineral P, signaling physical bedrock weathering, reaches maximum values ca. 2900, 2150, and 1400 cal yr BP, coincident with finer median grain size and a shift toward darker red sediment. These peaks, interpreted as signals of periglacial activity, align with pulses of rock glacier activity in Colorado determined from lichenometry. The youngest peak coincides with lichenometric ages previously determined for periglacial deposits upstream from the lake. A pulse of renewed periglacial activity ca. 400 cal yr BP represents the Little Ice Age. The late 20th century witnessed extremely high values of organic matter and biogenic silica, and unprecedented low values of C:N, reflecting greatly enhanced in-lake productivity, likely due to disturbance in the watershed.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antevs, E.V. The Great Basin, with emphasis on glacial and postglacial times: climatic changes and pre-white man. Bulletin of the University of Utah 38, (1948). 168191.Google Scholar
Armour, J., Fawcett, P.J., and Geissman, J.W. 15 k.y. paleoclimatic and glacial record from northern New Mexico. Geology 30, (2002). 723726.2.0.CO;2>CrossRefGoogle Scholar
Benedict, J.B. Recent glacial history of an alpine area in the Colorado Front Range, USA. I. Establishing a lichen-growth curve. Journal of Glaciology 6, (1967). 817832.CrossRefGoogle Scholar
Benedict, J.B. A 2000-year lichen-snowkill chronology for the Colorado Front Range, USA. The Holocene 3, (1993). 2733.CrossRefGoogle Scholar
Berger, A.L. Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research 9, (1978). 139167.CrossRefGoogle Scholar
Bockheim, J., and Koerner, D. Pedogenesis in alpine ecosystems of the eastern Uinta Mountains, Utah, USA. Arctic and Alpine Research (1997). 164172.CrossRefGoogle Scholar
Bockheim, J., Munroe, J., Douglass, D., and Koerner, D. Soil development along an elevational gradient in the southeastern Uinta Mountains, Utah, USA. Catena 39, (2000). 169185.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Demenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, (1997). 12571266.CrossRefGoogle Scholar
Bowerman, N.D., and Clark, D.H. Holocene glaciation of the central Sierra Nevada, California. Quaternary Science Reviews 30, (2011). 10671085.CrossRefGoogle Scholar
Carson, E.C., and Munroe, J.S. Tree-ring based streamfiow reconstruction for Ashley Creek, northeastern Utah: implications for palaeohydrology of the southern Uinta Mountains. The Holocene 15, (2005). 602611.CrossRefGoogle Scholar
Carson, E.C., Knox, J.C., and Mickelson, D.M. Response of bankfull flood magnitudes to Holocene climate change, Uinta Mountains, northeastern Utah. Geological Society of America Bulletin 119, (2007). 10661078.CrossRefGoogle Scholar
Clague, J.J., Menounos, B., Osborn, G., Luckman, B.H., and Koch, J. Nomenclature and resolution in Holocene glacial chronologies. Quaternary Science Reviews 28, (2009). 22312238.CrossRefGoogle Scholar
Clark, D.H., Steig, E.J., Potter, N. Jr., and Gillespie, A.R. Genetic variability of rock glaciers. Geografiska Annaler: Series A, Physical Geography 80, (1998). 175182.CrossRefGoogle Scholar
Davis, P.T., Menounos, B., and Osborn, G. Holocene and latest Pleistocene Alpine glacier fluctuations: a global perspective. Quaternary Science Reviews 28, (2009). 20212033.CrossRefGoogle Scholar
Dean, W.E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Petrology 44, (1974). 242248.Google Scholar
Filippelli, G.M., Souch, C., Menounos, B., Slater-Atwater, S., Jull, A.J.T., and Slaymaker, O. Alpine lake sediment records of the impact of glaciation and climate change on the biogeochemical cycling of soil nutrients. Quaternary Research 66, (2006). 158166.CrossRefGoogle Scholar
Grove, J.M. Little Ice Ages; Ancient and Modern. (2004). Routledge, London, UK. (718 pp.)Google Scholar
Janke, J.R. Colorado Front Range Rock Glaciers: distribution and topographic characteristics. Arctic, Antarctic, and Alpine Research 39, (2007). 7483.CrossRefGoogle Scholar
Kaplan, M.R., Wolfe, A.P., and Miller, G.H. Holocene environmental variability in southern Greenland inferred from lake sediments. Quaternary Research 58, (2002). 149159.CrossRefGoogle Scholar
Laabs, B.J.C., Refsnider, K.A., Munroe, J.S., Mickelson, D.M., Applegate, P.J., Singer, B.S., and Caffee, M.W. Latest Pleistocene glacial chronology of the Uinta Mountains: support for moisture-driven asynchrony of the last deglaciation. Quaternary Science Reviews 28, (2009). 11711187.CrossRefGoogle Scholar
Leonard, E.M. The relationship between glacial activity and sediment production; evidence from a 4450-year varve record of neoglacial sedimentation in Hector Lake, Alberta, Canada. Journal of Paleolimnology 17, (1997). 319330.CrossRefGoogle Scholar
Marcott, S.A., (2011). Late Pleistocene and Holocene Glaciers and Climate Change. Unpublished Ph.D. dissertation, Oregon State University, 248 pp.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, C.J., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quaternary Research 62, (2004). 243255.CrossRefGoogle Scholar
Meyers, P.A., and Ishiwatari, R. Lacustrine organic geochemistry; an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, (1993). 867900.CrossRefGoogle Scholar
Millar, C.I., and Westfall, R.D. Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA: inventory, distribution and climatic relationships. Quaternary International 188, (2008). 90104.CrossRefGoogle Scholar
Moser, K.A., Mordecai, J.S., Reynolds, R.L., Rosenbaum, J.G., and Ketterer, M.E. Diatom changes in two Uinta mountain lakes, Utah, USA: responses to anthropogenic and natural atmospheric inputs. Hydrobiologia 648, (2010). 91108.CrossRefGoogle Scholar
Munroe, J. Timing of postglacial cirque reoccupation in the northern Uinta Mountains, northeastern Utah, USA. Arctic, Antarctic, and Alpine Research 34, (2002). 3848.CrossRefGoogle Scholar
Munroe, J. Holocene timberline and palaeoclimate of the northern Uinta Mountains, northeastern Utah, USA. The Holocene 13, (2003). 175185.CrossRefGoogle Scholar
Munroe, J.S. Properties of alpine soils associated with well-developed sorted polygons in the Uinta Mountains, Utah, USA. Arctic, Antarctic, and Alpine Research 39, (2007). 578591.CrossRefGoogle Scholar
Munroe, J.S. Lacustrine records of post‐glacial environmental change from the Nulhegan Basin, Vermont, USA. Journal of Quaternary Science 27, (2012). 639648.CrossRefGoogle Scholar
Munroe, J. S. and Laabs, B. J. C., (2009). Glacial Geologic Map of the Uinta Mountains Area, Utah and Wyoming. Utah Geological Survey Miscellaneous, Publication 09–4DM, 1:100,000.Google Scholar
Munroe, J.S., Crocker, T.A., Giesche, A.M., Rahlson, L.E., Duran, L.T., Bigl, M.F., and Laabs, B.J.C. A lacustrine-based Neoglacial record for Glacier National Park, Montana, USA. Quaternary Science Reviews 53, (2012). 3954.CrossRefGoogle Scholar
Nederbragt, A.J., and Thurow, J. Geographic coherence of millennial-scale climate cycles during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 221, (2005). 313324.CrossRefGoogle Scholar
Nicholas, J.W., and Butler, D.R. Application of relative-age dating techniques on rock glaciers of the La Sal Mountains, Utah: an interpretation of Holocene paleoclimates. Geografiska Annaler. Series A. Physical Geography 78A, (1996). 118.Google Scholar
Paasche, Ø., Dahl, S.O., Løvlie, R., Bakke, J., and Nesje, A. Rockglacier activity during the Last Glacial–Interglacial transition and Holocene spring snowmelting. Quaternary Science Reviews 26, (2007). 793807.CrossRefGoogle Scholar
Refsnider, K.A., and Brugger, K.A. Rock glaciers in central Colorado, USA, as indicators of Holocene climate change. Arctic, Antarctic, and Alpine Research 39, (2007). 127136.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Reynolds, R.L., Mordecai, J.S., Rosenbaum, J.G., Ketterer, M.E., Walsh, M.K., and Moser, K.A. Compositional changes in sediments of subalpine lakes, Uinta Mountains (Utah): evidence for the effects of human activity on atmospheric dust inputs. Journal of Paleolimnology 44, (2010). 161175.CrossRefGoogle Scholar
Rosenbaum, J.G., and Reynolds, R.L. Record of late Pleistocene glaciation and deglaciation in the Southern Cascade Range. II. Flux of glacial flour in a sediment core from Upper Klamath Lake, Oregon. Journal of Paleolimnology 31, (2004). 235252.CrossRefGoogle Scholar
Rosenbaum, J.G., Reynolds, R.L., and Colman, S.M. Fingerprinting of glacial silt in lake sediments yields continuous records of alpine glaciation (35–15 ka), western USA. Quaternary Research 78, (2012). 333340.CrossRefGoogle Scholar
Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Ivy-Ochs, S., Kubik, P.W., Andersen, B.G., Phillips, F.M., Lowell, T.V., and Schluechter, C. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science 312, (2006). 15101513.CrossRefGoogle ScholarPubMed
Schulz, M., and Mudelsee, M. REDFIT; estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28, (2002). 421426.CrossRefGoogle Scholar
Sears, J., Graff, P., and Holden, G. Tectonic evolution of lower Proterozoic rocks, Uinta Mountains, Utah and Colorado. Geological Society of America Bulletin 93, (1982). 990997.2.0.CO;2>CrossRefGoogle Scholar
Shuman, B. Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States. Journal of Paleolimnology 30, (2003). 371385.CrossRefGoogle Scholar
Steinhilber, F., Beer, J., and Fröhlich, C. Total solar irradiance during the Holocene. Geophysical Research Letters 36, (2009). L19704 CrossRefGoogle Scholar
Strickland, J.D.H., and Parsons, T.R. A manual of sea water analysis: with special reference to the more common micronutrients and to particulate organic material. Bulletin - Fisheries Research Board of Canada Fisheries Research Board of Canada Report 125, (1965). 203 Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Wahrhaftig, C., and Cox, A. Rock glaciers in the Alaska Range. Geological Society of America Bulletin 70, (1959). 383436.CrossRefGoogle Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., and Jetel, M. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, (2011). 31093123.CrossRefGoogle Scholar
Washburn, A., and Goldthwait, R. Slushflows. Geological Society of America Bulletin 69, (1958). 16571658.Google Scholar
Williams, M.W., Baron, J.S., Caine, N., Sommerfeld, R., Sanford, R. Jr. Nitrogen saturation in the Rocky Mountains. Environmental Science & Technology 30, (1996). 640646.CrossRefGoogle Scholar
Zielinski, G.A. Lacustrine sediment evidence opposing Holocene rock glacier activity in the Temple Lake Valley, Wind River Range, Wyoming, USA. Arctic and Alpine Research (1989). 2233.CrossRefGoogle Scholar