Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T03:24:15.338Z Has data issue: false hasContentIssue false

Lake-Level Chronology on the Southern Bolivian Altiplano (18°–23°S) During Late-Glacial Time and the Early Holocene

Published online by Cambridge University Press:  20 January 2017

Florence Sylvestre
Affiliation:
Université d'Angers, Laboratoire de Géologie 2, boulevard Lavoisier, 49045, Angers Cedex, France
Michel Servant
Affiliation:
ORSTOM, 32, avenue Henri Varagnat, 93143, Bondy Cedex, France
Simone Servant-Vildary
Affiliation:
ORSTOM-MNHN, Laboratoire de Géologie, 43, rue Buffon, 75005, Paris Cedex, France
Christiane Causse
Affiliation:
LSCE (UMR CNRS-CEA), avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
Marc Fournier
Affiliation:
IPSNI-LMRE, Bat. 501, Bois des Rames, 91400, Orsay Cedex, France
Jean-Pierre Ybert
Affiliation:
Université d'Angers, Laboratoire de Géologie 2, boulevard Lavoisier, 49045, Angers Cedex, France

Abstract

Stratigraphic analyses of outcrops, shorelines, and diatoms from the southern Bolivian Altiplano (Uyuni-Coipasa basin) reveal two major lacustrine phases during the late-glacial period and the early Holocene, based on a chronology established by radiocarbon and U/Th control. A comparison of14C and230Th/234U ages shows that during times of high lake level, radiocarbon ages are valid. However, during low-water periods,14C ages must be corrected for a reservoir effect. The lacustrine Tauca phase started a little before 16,00014C yr B.P., and the lake level reached its maximum between 13,000 and 12,00014C yr B.P. A dry event (Ticaña) occurred after ca. 12,000 and before 950014C yr B.P. A moderate lacustrine oscillation (Coipasa event) occurred between ca. 9500 and 850014C yr B.P., using a reservoir-corrected conventional14C chronology. Comparisons between the lake-level chronology in the Uyuni-Coipasa basin and data from other southern tropical areas of South America suggest that the lacustrine evolution may reflect large-scale climatic changes.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Seltzer, G.O., Kelts, K.R., and Southon, J. (1997). Holocene paleohydrology of the Tropical Andes from lakes records. Quaternary Research 47, 7080.CrossRefGoogle Scholar
Abbott, M.B., Binford, M.W., Brenner, M., and Kelts, K.R. (1997). A 350014 . Quaternary Research 47, 7080.Google Scholar
Absy, M.L., Cleef, A., Fournier, M., Martin, M., Servant, M., Sifeddine, A., Ferreira da Silva, M., Soubies, F., Suguio, K., Turcq, B., and Van der Hammen, T. (1991). Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de l'Amazonie au cours des 60 000 dernières années. Première comparaison avec d'autres régions tropicales. Comptes Rendus Académie des Sciences Paris 312, 673678.Google Scholar
Bard, E., Arnold, M., Fairbanks, R.G., and Hamelin, B. (1993). 230 234 14 . Radiocarbon 35, 191199.Google Scholar
Benson, L. (1993). Factors affecting14 . Quaternary Research 39, 163174.CrossRefGoogle Scholar
Benson, L.V., Currey, D.R., Dorn, R.I., Lajoie, K.R., Oviatt, C.G., Robinson, S.W., Smith, G.I., and Stine, S. (1990). Chronology of expansion and contraction of four Great Basin Lake systems during the past 35,000 years. Palaeogeography, Palaeoclimatology, Palaeocology 78, 241286.CrossRefGoogle Scholar
Bills, B.G., de Silva, S.L., Currey, D.R., Emenger, R.S., Lillquist, K.D., Donnellan, A., and Worden, B. (1994). Hydro-isostatic deflection and tectonic tilting in the central Andes: Initial results of a GPS survey of Lake Minchin shorelines. Geophysical Research Letters 21, 293296.CrossRefGoogle Scholar
Causse, C. (1992). Méthodes isochrones pour la datation U/Th des carbonates “impurs”: l'exemple de Taoudenni.Ateliers sur les déséquilibres Uranium-Thorium: Application à l'étude des cycles biogéochimiques continentaux et marins et voies de recherche ouvertes par l'analyse en spectrométrie de masse, Montréal, Canada, May 1992.Google Scholar
Causse, C., and Vincent, J-S. (1989). Th/U disequilibrium dating of Middle and Late Pleistocene wood and shells from Banks and Victoria islands, Arctic Canada. Canadian Journal of Earth Sciences 26, 27182723.Google Scholar
Causse, C., Coque, R., Fontes, J-Ch., Gasse, F., Gibert, E., Ben Ouezdou, H., and Zouari, K. (1989). Two high levels of continental waters in the southern Tunisian chotts at about 90 and 150 ka. Geology 17, 922925.Google Scholar
Science 241, (1988). 10431052.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., and Bush, M.B. (1996). A long pollen record from lowland Amazonia: Forest and cooling in Glacial times. Science 274, 8588.Google Scholar
Clayton, J.D., and Clapperton, C.M. (1997). Broad sunchrony of a Late-Glacial advance and the highstand of palaeolake Tauca in the Bolivian Altiplano. Journal of Quaternary Science 12, 169182.3.0.CO;2-S>CrossRefGoogle Scholar
Fontes, J.C., and Gasse, F. (1991). PALHYDAF (Paleohydrology in Africa) program: Objectives, methods, major results. Palaeogeography, Palaeoclimatology, Palaeocology 84, 191215.Google Scholar
Fontes, J.C., Andrews, J.N., Causse, C., and Gibert, E. (1992). A comparison of radiocarbon and U/Th ages on continental carbonates. Radiocarbon 34, 602610.Google Scholar
Fontes, J.C., Gasse, F., and Gibert, E. (1996). Holocene environmental changes in Lake Bangong basin (Western Tibet). 1. Chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 2547.Google Scholar
Gaven, C., Hillaire-Marcel, C., and Petit-Maire, N. (1981). A Pleistocene lacustrine episode in southeastern Libya. Nature 290, 131135.CrossRefGoogle Scholar
Geyh, M.A., and Hennig, G.J. (1986). Multiple dating of a long flowstone profile. Radiocarbon 28, 503509.Google Scholar
Grosjean, M. (1994). Paleohydrology of Laguna Lejı́a (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 89100.Google Scholar
Grosjean, M., Schotterrer, U., Geyh, M.A., and Messerli, B. (1995). Late-Glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano. Journal of Paleolimnology 14, 112.Google Scholar
Hastenrath, S., and Kutzbach, J. (1985). Late Pleistocene climate and water budget of the South American altiplano. Quaternary Research 24, 249256.Google Scholar
Ku, T.L., and Liang, Z.C. (1984). The dating of impure carbonates with decay-series isotopes. Nuclear Instruments and Methods in Physics Research 223, 563571.Google Scholar
Ledru, M.P. (1993). Late Quaternary environmental and climatic changes in Central Brazil. Quaternary Research 39, 9098.Google Scholar
Maley, J. (1991). The African rain forest vegetation and palaeoenvironments during Late Quaternary. Climatic Change 19, 7998.CrossRefGoogle Scholar
Messerli, B., Grosjean, M., Bonani, G., Bürgi, A., Geyh, M.A., Graf, K., Ramseyer, K., Romero, H., Schotterer, U., Schreier, H., and Vuille, M. (1993). Climate change and natural ressource dynamics of the Atacama Altiplano during the last 18,000 years: A preliminary synthesis. Mountain Research Development 13, 117127.CrossRefGoogle Scholar
Risacher, F. (1992). Géochimie des lacs salés et croûtes de sel de l'Altiplano bolivien. Bulletin Sciences Géologiques 45, 135219.Google Scholar
Roche, M.A., Bourges, J., Cortes, J., and Mattos, R. (1992). Climatology and hydrology of the Lake Titicaca basin. Lake Titicaca: A Synthesis of Limnological Knowledge Kluwer Academic, Dordrecht.p. 63–88Google Scholar
Rouchy, J.M., Servant, M., Fournier, M., and Causse, C. (1996). Extensive carbonate algal bioherms in upper Pleistocene saline lakes of the central Altiplano of Bolivia. Sedimentology 43, 973993.CrossRefGoogle Scholar
Salgado-Labouriau, M.L. (1997). Late Quaternary paleoclimate in the savannas of South America. Journal of Quaternary Science 12, 371379.Google Scholar
Salgado-Labouriau, M.L., Casseti, V., Ferraz-Vicentini, K.R., Martin, L., Soubiès, F., Suguio, K., and Turcq, B. (1997). Late Quaternary vegetational and climatic changes in cerrado and palm swamp from Central Brazil. Paleogeography, Paleoclimatology, Paleoecology 128, 215226.Google Scholar
Schwarcz, H.P., and Skoflek, I. (1982). New dates for the Tata Hungary archaeological site. Nature 295, 590591.Google Scholar
Schwarcz, H.P., and Latham, A.G. (1989). Dirty calcites. Uranium-series dating of contaminated calcite using leachates alone. Chemical Geology 80, 3543.Google Scholar
Servant, M., and Fontes, J.C. (1978). Les lacs quaternaires des hauts plateaux des Andes Boliviennes. Premières interprétations paléoclimatiques. Cahiers ORSTOM Série Géologie 10, 923.Google Scholar
Servant, M., Fontes, J.C., Argollo, J., and Saliège, J.F. (1981). Variations du régime et de la nature des précipitations au cours des 15 derniers millénaires dans les Andes de Bolivie. Comptes Rendus Académie des Sciences Paris 292, 12091212.Google Scholar
Servant, M., and Fontes, J.C. (1984). Les basses terrasses fluviatiles du Quaternaire récent des Andes boliviennes. Datations par le14 . Cahiers ORSTOM Série Géologie 14, 1528.Google Scholar
Servant, M., Fournier, M., Argollo, J., Servant-Vildary, S., Sylvestre, F., Wirrmann, D., and Ybert, J.P. (1995). La dernière transition glaciaire/interglaciaire des Andes tropicales sud (Bolivie) d'après l'étude des variations des niveaux lacustres et des fluctuations glaciaires. Comptes Rendus Académie des Sciences Paris 320, 729736.Google Scholar
Servant-Vildary, S. The diatoms.Dejoux, C., and Iltis, A. (1992). Lake Titicaca: A Synthesis of Limnological Knowledge. Kluwer Academic, Dordrecht.163176.Google Scholar
Servant-Vildary, S., and Mello e Sousa, S.H. (1993). Paleohydrology of the Quaternary saline Lake Ballivian (southern Bolivian Altiplano) based on diatom studies. International Journal of Salt Lake Research 2, 6985.CrossRefGoogle Scholar
Sifeddine, A., Fröhlich, F., Fournier, M., Martin, L., Servant, M., Soubiès, F., Turcq, B., Suguio, K., and Volkmer-Ribeiro, C. (1994). La sédimentation lacustre indicateur de changements des paléoenvironments au cours des 30 000 dernières années (Carajas, Amazonie, Brésil). Comptes Rendus Académie des Sciences Paris 318, 16451652.Google Scholar
Sylvestre, F. (1997). La dernière transition glaciaire–interglaciaire (18 000–8 00014 . Museum National d'Histoire Naturelle de Paris, Google Scholar
Sylvestre, F., Servant-Vildary, S., Fournier, M., and Servant, M. (1996). Lake-levels in the southern Bolivian Altiplano (19°–21°S) during the Late Glacial based on diatom studies. International Journal of Salt Lake Research 4, 281300.Google Scholar
Veit, H. (1996). Southern westerlies during the Holocene deduced from geomorphological and pedological studies in the Northern Chile (27°–33°S). Palaeogeography, Palaeoclimatology, Palaeoecology 123, 107119.Google Scholar
Wirrmann, D., (1987). El lago Titicaca: Sedimentologı́a y paleohidrologı́a durante el Holocene (10 000 años B.P. actual). Informe, UMSA, ORSTOM, La Paz Google Scholar
Wirrmann, D., Mourguiart, P., and Oliveira Almeida, L.F.de (1988). Holocene sedimentology and ostracodes repartition in Lake Titicaca. Paleohydrological interpretations. Quaternary of South America and Antarctic Peninsula 6, 89127.Google Scholar
Ybert, J.P. Ancient lake environments as deduced from pollen analysis.(1992). Dejoux, C., Iltis, A. Lake Titicaca: A Synthesis of Limnological Knowledge Kluwer Academic, Dordrecht.4962.Google Scholar