Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T08:47:12.189Z Has data issue: false hasContentIssue false

Land–sea correlations for the last glaciation inferred from a pollen and dinocyst record from the Portuguese margin

Published online by Cambridge University Press:  20 January 2017

Jean-Louis Turon*
Affiliation:
Département de Géologie et Océanographie EPOC UMR CNRS 5805, Université Bordeaux 1, 33405 Talence Cedex, France
Anne-Marie Lézine
Affiliation:
ESA7073 CNRS Paléontologie et Stratigraphie, Université Pierre et Marie Curie, 75252 Paris Cedex 5, France
Michelle Denèfle
Affiliation:
URA141 CNRS Géographie Physique, 1 Place Aristide Briand, 92195 Meudon Principal Cedex, France
*
*Corresponding author. E-mail address: turon@geocean.u-bordeaux.fr (J.-L. Turon).

Abstract

Pollen and dinoflagellate cyst assemblages from Core SU 81-18 recovered off Portugal (37°46′N, 10°11′W; 3135-m water depth) have been used to document the short-term environmental changes that occurred in southwest Europe since 25,000 yr B.P. The relationship between the oceanic and continental environments has been further examined by the use of other marine proxies (coarse sedimentary fraction, foraminifera) and by comparison with proximal land pollen records. Heinrich 2 (H2) and Heinrich 1 (H1) events were the most extreme parts of the highly variable last glacial period, with the maximum extension of dry steppe on land and the occurrence of cool and dilute waters at the core site. Our study shows that H1 and H2 are divided in two distinct phases: one with Neogloboquadrina pachyderma left coiling associated with the maximum input of ice rafted debris, reflecting the in situ release of icebergs and the occurrence of cool and dilute seawater at the core site; the other with dinoflagellate cysts of subpolar affinity, Bitectatodinium tepikiense, reflecting a seasonal control marked by warm summer SST and cold winter SST.

Type
Articles
Copyright
Elsevier Science (USA)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidi, N., (1997). Les kystes de dinoflagellés marqueurs de l’environnement océanique: Répartition actuelle dans l’océan indien occidental et application à deux séquences sédimentaires du canal de Mozambique. Thesis, Univ. Paris 6, 183 ppGoogle Scholar
Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, W.A., Wulf, S., and Zolitschka, B. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, (1999). 740 743.Google Scholar
Allen, J.R.M., and Huntley, B. The vegetation and climate of northwest Iberia over the last 14 000 yr. Journal of Quaternary Science 11, 2 (1996). 125 147.Google Scholar
Baas, J.H., Mienert, J., Abrantes, F., and Prins, M.A. Late Quaternary sedimentation on the Portuguese continental margin. Climate-related processes and producted. Palaeogeography, Palaeoclimatology, Palaeoecology 130, (1997). 1 23.Google Scholar
Bard, E. Correction of acceletator mass spectrometry 14C ages measured in planktonic foraminifera. Paleoceanographic implications. Paleoceanography 6, (1988). 635 645.Google Scholar
Bard, E., (1999). When the LGM? EPILOG Workshop, Global Ocean and Land Surface Temperatures during the last Ice Age. Delmenhorst, Germany., May 1999 Google Scholar
Bard, E., Arnold, M., Maurice, P., Duprat, J., Moyes, J., and Duplessy, J.C. Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328, (1987). 791 794.Google Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N., and Cabioch, G. Radiocarbon calibration by means of mass spectrometric 230 Th/234U and 14C ages of corals. An updated data base including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40, 3 (1998). 1085 1092.Google Scholar
Bard, E., Fairbanks, R., Arnold, M., Maurice, P., Duprat, J., Moyes, J., and Duplessy, J.-C. Sea-level estimates during the last deglaciation based on d18O and accelerator mass spectrometry 14C ages measured in Globigerina bulloides . Quaternary Research 31, (1989). 381 391.Google Scholar
Bard, E., Rostek, F., Turon, J.L., and Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, (2000). 1321 1324.Google Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, C., Simet, C., Tedesco, K., Klas, M., and Bonnani, G. Evidence for massive discharges of iceberg into the glacial North Atlantic. Nature 360, (1992). 245 249.Google Scholar
Bond, G.C., and Lotti, R. Iceberg discharges into the North Atlantic on millenial time scales during the last glaciation. Science 267, (1995). 1005 1009.Google Scholar
Broecker, W.S. Massive iceberg discharges as triggers of global climate change. Nature 372, (1994). 421 424.Google Scholar
Broecker, W.S., and Denton, G.H. The role of ocean-atmosphere reorganization in glacial cycles. Geochimica Cosmochimica Acta 53, (1989). 2465 2501.Google Scholar
Broecker, W.S., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S., Bonani, G., and Wolfli, W. Routing of meltwater from Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, (1989). 318 321.Google Scholar
Cortijo, E., Labeyrie, L., Vidal, L., Vautravers, M.L., Chapman, M., Duplessy, J.C., Elliot, M., Arnold, M., Turon, J.L., and Auffret, G. Changes in sea-surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40° and 60°N. Earth and Planetary Science Letters 146, (1997). 29 45.Google Scholar
De Beaulieu, J.-L., Andrieu, V., Ponel, P., and Lowe, J.J. The Weichselian Late-Glacial in southwestern Europe (Iberian Peninsula, Pyrenees, Massif Central, northern Apennines). Journal of Quaternary Science 9, 2 (1994). 101 107.CrossRefGoogle Scholar
De Vernal, A., Hillaire-Marcel, C., Turon, J.-L., and Matthiessen, J. Reconstruction of Sea-Surface Temperature, Salinity, and Sea-Ice c over in the North Atlantic during the last glacial maximum based on Dinocyst assemblages. Canadian Journal of Earth Sciences 37, 5 (2000). 725 750.Google Scholar
De Vernal, A., Rochon, A., Turon, J.-L., and Matthiessen, J. Organic-walled dinoflagellate cysts. palynological tracers of sea-surface conditions in middle to high latitude marine environments. Geobios 30, 7 (1998). 905 920.Google Scholar
Devillers, R., and de Vernal, A. Dinocyst assemblages in surface sediment and nutrient (NO3, PO4 and SiO2) distribution in upper water masses from the northern North Atlantic. Norges technisk naturvitenskapelige Universitet vitensk.mus. Trondheim,. Rapport Botanical Series 1, (1988). 32 Google Scholar
Devillers, R., and de Vernal, A. Distribution of dinoflagellate cysts in surface sediments of the North Atlantic in relation to nutient content and productivity in surface waters. Marine Geology 166, 1–4 (2000). 103 124.Google Scholar
Duplessy, J.-C., Bard, E., Labeyrie, L., Duprat, J., and Moyes, J. Oxygen isotope records and salinity changes in the Northeastern Atlantic ocean during the last 18,000 years. Paleoceanography 8, 3 (1993). 341 350.Google Scholar
Duprat, J., (1983). Les foraminifères planctoniques du Quaternaire terminal d’un domaine péricontinental (Golfe de Gascogne, Cote Ouest Ibérique, Mer d’Alboran) Ecologie-Biostratigraphie. Thesis Univ. Bordeaux I, 177 ppGoogle Scholar
Elliot, M., Labeyrie, L., Bond, G., Cortijo, E., Turon, J.-L., Tisnerat, N., and Duplessy, J.-C. Millenial-scale iceberg discharges in the Irminger Basin during the last glacial period. relationship with the Heinrich events and environmental settings. Paleoceanography 13, 5 (1998). 433 446.CrossRefGoogle Scholar
Eynaud, F., (1999). Kystes de dinoflagellés et évolution paléoclimatique et paléohydrologique de l’Atlantique Nord au cours du dernier cycle climatique du Quaternaire. Thesis Univ. Bordeaux I, 291 ppGoogle Scholar
Faegri, K., and Iversen, J. Textbook of pollen analysis. 3rd ed. (1975). Oxford, Blackwell.Google Scholar
Florer, L.E. Pollen analysis of marine sediments off the Washington coast. Marine Geology 14, (1973). 73 78.Google Scholar
Florschütz, F., Menendez Amor, J., and Wijmstra, T. Palynology of a thick Quaternary succession in S. Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 10, (1971). 233 264.Google Scholar
Foss, P.J., and Doyle, G.J. A palynological study of the irish ericaceae and Empetrum. Pollen and Spores 30, 2 (1988). 151 178.Google Scholar
Grimm, E.C., Jacobson, G.L., Watts, W.A. Jr, Hansen, B.C.H., and Maarsch, K.A. A 50 000-year sequence from Lake Tulane, Florida and its temporal correlation with the Heinrich events. Science 261, (1993). 198 200.Google Scholar
Grousset, F., Labeyrie, L., Sinko, J.A., Cremer, M., Bond, G., Duprat, J., Cortijo, E., and Huon, S. attern of ice-rafted detritus in the glacial North-Atlantic. Paleoceanography 8, (1993). 175 192.Google Scholar
Grousset, F.E., Pujol, C., Labeyrie, L., Auffret, G., and Boelaert, A. Were the North-Atlantic Heinrich events triggered by the behavior of the European ice sheets. Geology 28, 2 (2000). 123 126.Google Scholar
Heusser, L.E., and Balsam, W.L. Pollen distribution in the Northeast Pacific Ocean,. Quaternary Research 7, (1977). 45 62.Google Scholar
Heusser, C.J., and Florer, L.E. Correlation of Marine and Continental Quaternary Pollen Records from the Northeast Pacific and Western Washington. Quaternary Research 3, (1973). 661 670.Google Scholar
Hooghiemstra, H., Agwu, C.O.C., and Beug, H.J. Pollen and spore distribution in recent marine sediments. a record of NW-African seasonal wind patterns and vegetation belts. Meteor Forschungs Ergebnisse,C 40, (1986). 87 135.Google Scholar
Hooghiemstra, H., Stalling, H., Agwu, C.O.C., and Dupont, L. Vegetational and climatic changes at the northern fringe of the Sahara 250,000-5000 years BP. evidence from 4 marine pollen records located between Portugal and the Canary Islands. Review of Palaeobotany and Palynology 74, (1992). 1 53.Google Scholar
Kageyama, M., Peyron, O., Pinot, O., Tarasov, P., Guiot, J., Joussaume, S., Ramstein, G., (2001). The Last glacial maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Climate Dynamics 17, 2343.Google Scholar
Lamb, H.F., Gasse, F., Benkaddour, A., El Hamouti, N., van der Kaars, S., Perkins, W.T., Pearce, N.J., and Roberts, C.N. Relation between century scale Holocene arid intervals in tropical and temperate zones. Nature 373, (1995). 134 137.Google Scholar
Lebreiro, S.M., Moreno, J.C., Mc Cave, I.N., and Weaver, P.P.E. Evidence of Heinrich layers off Portugal (Tore Seamount, 39N, 12W). Marine Geology 131, (1992). 47 56.Google Scholar
Lézine, A.-M., and Denèfle, M. Enhanced anticyclonic circulation in the eastern north Atlantic during cold intervals of the last deglaciation inferred from deep-sea pollen records. Geology 25, 2 (1997). 119 122.Google Scholar
Lézine, A.M., and Hooghiemstra, H. Land-sea comparisons during the last glacial-interglacial transition. pollen records from West Tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 79, (1990). 313 331.Google Scholar
Lowe, J.J., Ammann, B., Birks, H.H., Bjorck, S., Cwynar, L., de Beaulieu, J.L., Mott, R.J., Peteet, D.M., and Walker, M.J.C. Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14-9 ka BP). a contribution to IGCP-235. Journal of Quaternary Science 9, (1994). 185 198.Google Scholar
Manabe, S., and Stouffer, R.J. Simulation of abrupt climatic change inducded by freshwater input to the North Atlantic Ocean. Nature 378, (1995). 165 167.Google Scholar
Narcisi, B. Tephrochronology of a late Quaternary lacustrine record from the Monticchio maar (Vulture volcano, Southern Italy). Quaternary Science Reviews 15, (1996). 155 165.Google Scholar
Oldfield, F. The pollen morphology of some of the West European Ericale. Preliminary descriptions and tentative key to their identification. Pollen et Spores 1, (1959). 19 48.Google Scholar
Oldfield, F. Late-Quaternary deposits at Le Moura, Biarritz, South-West France. The New Phytologist 63, (1964). 374 409.Google Scholar
Penalba, C., (1994). Dynamique de végétation tardiglaciaire et holocène du centre-nord de l’Espagne d’après l’analyse pollinique. Thesis, Univ. Aix-Marseille 3, 165 ppGoogle Scholar
Pérez-Obiol, R., and Julià, R. Climatic change on the Iberian Peninsula recorded in a 30,000-yr pollen record from lake Banyoles. Quaternary Research 41, (1994). 91 98.Google Scholar
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.-L., Bottema, S., and Andrieu, V. Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quaternary Research 49, (1998). 183 196.Google Scholar
Pinot, S., Ramstein, G., Marsiat, I., de Vernal, A., Peyron, O., Duplessy, J.-C., and Weinelt, M. Sensitivity of the European LGM climate to North Atlantic sea-surface temperature. Geophysical Research Letters 26, 13 (1999). 1893 1896.Google Scholar
Pons, A., and Reille, M. The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain). a new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66, (1988). 243 263.Google Scholar
Reille, M., (1992). Pollen et spores d’Europe et d’Afrique du nord. Marseille, LBHP: 520 ppGoogle Scholar
Reille, M., and Andrieu, V. The late Pleistocene and Holocene in the Lourdes basin,western Pyrénées. new pollen analytical and chronological data. Vegetation history and Archaeobotany 4, (1995). 1 21.Google Scholar
Reille, M., and Lowe, J.J. A re-evaluation of the vegetation history of the eastern Pyrénées (France) from the end of the last glacial to the present. Quaternary Science Reviews 12, (1993). 47 77.Google Scholar
Rochon, A., de Vernal, A., Turon, J.L., Matthiessen, J., Head, M., (1999). Distribution of dinoflagellate cyst assemblage in surface sediments from the North Atlantic Ocean and adjacent basins and quantitative reconstruction of sea surface parameters, American Association of Stratigraphic Palynologists Special Contributions Series), 35, 109 ppGoogle Scholar
Ruddiman, W.F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (Lat 40 to 65). Geological Society of America, Bulletin 88, (1977). 1813 1827.Google Scholar
Ruddiman, W.F., and McIntyre, A. The North Atlantic Ocean during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 35, (1981). 145 214.Google Scholar
Sanchez Goni, M.F., Turon, J.L., Eynaud, F., and Gendreau, S. European Climaticresponse to Millenial-Scale Changes in the Atmosphere-Ocean System during the Last Glacial Period. Quaternary Research 54, (2000). 394 403. doi: 10.1006/qres.2000.2176 Google Scholar
Scourse, J.D., Hall, I.R., McCave, I.N., Young, J.R., and Sugdon, C. The origin of Heinrich layers. evidence from H2 for European precursor events. Earth and planetary Science Letters 182, (2000). 187 195.Google Scholar
Snoeckx, H., Grousset, F.E., and Revel, M. European contribution of ice-rafted sand to Heinrich layers H3 and H4,. Marine Geology 158, 1–4 (1999). 197 208.Google Scholar
Street-Perrott, F., and Perrott, R.A. Abrupt climate fluctuations in the tropics. the influence of Atlantic ocean circulation. Nature 343, (1990). 607 612.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughens, K.A., Kromer, B., Mc Cormick, G., van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24,000-0 cal yr BP. Radiocarbon 40, 3 (1998). 1041 Google Scholar
Turner, C., and Hannon, G.E. Vegetational evidence for late Quaternary climatic changes in southwest Europe in relation to the influence of the North Atlantic Ocean. Phil. Trans. Royal Society London B 318, (1988). 451 485.Google Scholar
Turon, J.-L. Le palynoplancton dans l’environnement actuel de l’Atlantique nord- oriental. évolution climatique et hydrologique depuis le dernier maximum glaciaire. Mémoire de l’Institut de Géologie du Bassin d’Aquitaine 17, (1984). 313 pp Google Scholar
Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valetine, D.H., Walters, S.M., et al. ., (1964-1980). “Flora Europaea”. Cambridge University Press, 5 volumes, Google Scholar
Van Campo, M. Relations entre la végétation de l’Europe et les températures de surface océaniques après le dernier maximum glaciaire,. Pollen et Spores 26, 3–4 (1984). 497 518.Google Scholar
Watts, W.A., Allen, J.R.M., and Huntley, B. Vegetation history and palaeoclimate of the last glacial period at Lago Grande di Monticchio, Southern Italy. Quaternary Science Reviews 15, (1996). 133 153.Google Scholar
Weinelt, M., Sarnthein, M., Pflauman, U., Schulz, H., Jung, S., and Erlenkeuser, H. Ice-free Nordic seeas during the last Glacial Maximum? Potential sites of deepwater formation. Paleoclimates 1, (1996). 283 309.Google Scholar
Wimjstra, T.A. Palynology of the first 30 meters of a 120m deep section in Northern Greece. Acta Botanica Neerlandanica 18, 4 (1969). 511 527.Google Scholar
Zahn, R., Schönfeld, J., Kudrass, H.R., Park, M.H., Erlenkeuser, H., and Grootes, P. Thermohaline instability in the North Atlantic during meltwater events. stable isotope and ice-rafted detritus records from core SO75-26KL, Portuguese margin. Paleoceanography 12, 5 (1997). 696 710.Google Scholar