Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T23:48:18.750Z Has data issue: false hasContentIssue false

Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan Andes

Published online by Cambridge University Press:  20 January 2017

Nathan D. Stansell*
Affiliation:
Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
Pratigya J. Polissar
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
Mark B. Abbott
Affiliation:
Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
*
Corresponding author. Fax: +1 412 624 3914. E-mail address:nas12@pitt.edu (N.D. Stansell).

Abstract

The pattern and magnitude of glacier equilibrium-line altitude (ELA) lowerings in the tropics during the last glacial maximum (LGM) are topics of current debate. In the northern tropics, paleo-ELA data are particularly limited, inhibiting the ability to make regional and large-scale paleoclimatic inferences. To improve these records, nine paleo-glaciers in the Venezuelan Andes were reconstructed based on field observations, aerial photographs, satellite imagery and high-resolution digital topographic data. Paleo-glacier equilibrium-line altitudes (ELAs) were estimated using the accumulation-area ratio (AAR) and the area-altitude balance ratio (AABR) methods. During the local LGM in Venezuela (∼ 22,750 to 19,960 cal yr BP), ELAs were ∼ 850 to 1420 m lower than present. Local LGM temperatures were are at least 8.8 ± 2°C cooler than today based on a combined energy and mass-balance equation to account for an ELA lowering. This is greater than estimates using an atmospheric lapse rate calculation, which yields a value of 6.4 ± 1°C cooler. The paleo-glacial data from the Venezuelan Andes support other published records that indicate the northern tropics experienced a greater ELA lowering and possibly a greater cooling than the Southern Hemisphere tropics during the LGM.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, A., and Francou, B. Cordillera Blanca, Glaciares en la Historia. Bulletin de l'Institut Francais d'Etudes Andines 24, (1995). 3764.Google Scholar
Azocar, A., and Monasterio, M. Caracterización Ecológica del Clima en El Páramo de Mucubají. Monasterio, M. Estudios Ecologicos en los Páramos Andinos. (1980). Ediciones de la Universidad de Los Andes, Merida, Venezuela. 207223.Google Scholar
Benn, D., I., , and Evans, D.J.A. Glaciers and Glaciation. (1998). John Wiley and Sons, Inc., New York.Google Scholar
Berger, A.L. Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research 9, (1978). 139167.CrossRefGoogle Scholar
Betts, A.K., and Ridgeway, W. Climate equilibrium of the atmospheric convective boundary layer over a tropical ocean. Journal of the Atmospheric Sciences 46, (1989). 26212641.2.0.CO;2>CrossRefGoogle Scholar
Betts, A.K., and Ridgeway, W. Tropical boundary layer equilibrium in the Last Ice Age. Journal of Geophysical Research 97, (1992). 25292534.Google Scholar
Bradbury, J.P., Leyden, B., Salgado-Labouriau, M., Lewis, W.M. Jr., Schubert, C., Binford, M.W., Frey, D.G., Whitehead, D.R., and Weibezahn, F.H. Late quaternary environmental history of Lake Valencia, Venezuela. Science 214, (1981). 12991305.Google Scholar
Bradley, R.S., Yuretich, R., Salgado-Labouriau, M.L., and Weingarten, B. Late Quaternary paleoenvironmental reconstruction using lake sediments from the Venezuelan Andes: preliminary results. Zeitschrift für Gletscherkunde und Glazialgeologie 21, (1985). 97106.Google Scholar
Bradley, R., Yuretich, R., and Weingarten, B. Studies of modern climate. Yuretich, R. Late Quaternary Climatic Fluctuations of the Venezuelan Andes. (1991). University of Massachusetts, Amherst, MA. 4562.Google Scholar
Broecker, W.S. Mountain glaciers: recorders of atmospheric water vapor content?. Global Biogeochemical Cycles 11, (1997). 589597.Google Scholar
Clapperton, C.M. Glacial geomorphology, Quaternary glacial sequence and palaeoclimatic inferences in the Ecuadorian Andes. Gardiner, V. International Geomorphology 1986, Part II. (1987). Wiley, Chichester. 843870.Google Scholar
Clapperton, C.M. Quaternary Geology and Geomorphology of South America. (1993). Elsevier, Amsterdam.Google Scholar
CLIMAP, P.M. The surface of the ice-age earth. Science 191, (1976). 11311137.Google Scholar
CLIMAP, P.M., (1981). Seasonal reconstruction of the earth's surface at the last glacial maximum. Geological Society of America Map and Chart Series.Google Scholar
Denton, G.H., Heusser, C.J., Lowell, T.V., Schluchter, C., Andersen, B.G., Heusser, L.E., Moreno, P.I., and Marchant, D.R. Geomorphology, Stratigraphy, and Radiocarbon Chronology of Llanquihue Drift in the Area of the Southern Lake District, Seno Reloncavi, and Isla Grande de Chiloe, Chile. Geografiska Annaler 81A, (1999). 167229.Google Scholar
Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637642.CrossRefGoogle Scholar
Farrera, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J., Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U., Holmgren, K., Hopogheimstra, H., Hope, G., Jolly, D., Lauritzen, S.-E., Ono, Y., Pinot, S., Stute, M., and Yu, G. Tropical climates at the last glacial maximum: a new synthesis of terrestrial palaeoclimate data: I. Vegetation, lake-levels and geochemistry. Climate Dynamics 15, (1999). 823856.CrossRefGoogle Scholar
Favier, V., Wagnon, P., Ribstein, Glaciers of the outer and inner tropics: a different behaviour but a common response to climatic forcing. Geophysical Research Letters 31, (2004). L16403 doi:http://dx.doi.org/10.1029/2004GL020654Google Scholar
Francou, B., Ribstein, P., Saravia, R., and Tiriau, E. Monthly balance and water discharge of an inter-tropical glacier: Zongo Glacier, Cordillera Real, Bolivia, 16°S. Journal of Glaciology 41, (1995). 6167.Google Scholar
Furbish, D.J., and Andrews, J.T. The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology 30, (1984). 199211.CrossRefGoogle Scholar
Giegengack, R., and Grauch, R. Quaternary geology of the central Andes, Venezuela: a preliminary assessment. Excursion 1, (1973). 3893.Google Scholar
Greene, A.M., Seager, R., and Broecker, W.S. Tropical snowline depression at the last glacial maximum: comparison with proxy records using a single-cell tropical climate model. Journal of Geophysical Research 107, (2002). (ACL 4-1 to 17.) Google Scholar
Guilderson, T.P., Fairbanks, R.G., and Rubenstone, J.L. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263, (1994). 663665.CrossRefGoogle Scholar
Hastenrath, S. Interannual variability and the annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Monthly Weather Review 112, (1984). 10971107.Google Scholar
Hastenrath, S. Climate and ciculation of the tropics. (1985). C. Reidel Publishing Company, Dordrecht.Google Scholar
Hastenrath, S. Ice flow and mass changes of Lewis Glacier, Mount Kenya, East Africa: observations 1974–86, modeling, and predictions to the year 2000 A.D.. Journal of Glaciology 35, (1989). 325332.Google Scholar
Hoyos-Patiño, F. Glaciers of colombia. Williams, , and Ferrigno, J.G. Glaciers of South America, Satellite Image Atlas of Glaciers of the World. U.S. Geological Survey Professional Paper 1386-I. (1998). 111130.Google Scholar
Jordan, E. Die Gletscher der bolivianischen Andean. (1991). Franz Steiner Verlag Stuttgart, Eurasburg, Germany.Google Scholar
Kalnay, E., co-authors, The NCEP/NCAR reanalysis 40-year project. Bulletin of the American Meteorological Society 77, (1996). 437471.Google Scholar
Kaser, G. Some notes on the behavior of tropical glaciers. Bulletin de l'Institut Francais d'Etudes Andines 24, (1995). 671681.CrossRefGoogle Scholar
Kaser, G. Glacier–climate interaction at low latitudes. Journal of Glaciology 47, (2001). 195204.Google Scholar
Kaser, G., and Georges, C. On the mass balance of low latitude glaciers with particular consideration of the Peruvian Cordillera Blanca. Geografiska Annaler 81A, (1999). 643651.CrossRefGoogle Scholar
Kaser, G., and Noggler, B. Glacier fluctuations in the Ruwenzori Range (East Afrika) during the 20th century. A preliminary report. Zeitschrift Gletscherkunde Glazialgeologie 32, (1996). 109117.Google Scholar
Kaser, G., and Osmaston, H. Tropical Glaciers. (2002). Cambridge University Press, Cambridge.Google Scholar
Klein, A.G., Seltzer, G.O., and Isacks, B.L. Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile. Quaternary Science Reviews 18, (1999). 6384.CrossRefGoogle Scholar
Kuhn, M. The response of the equilibrium line altitude to climate fluctuations: theory and observations. Oerlemans, J. Glacier Fluctuations and Climate Change. (1989). Kluwer Academic Publishers, The Netherlands. 407417.Google Scholar
Lachniet, M.S., and Seltzer, G. Late Quaternary glaciation of Costa Rica. GSA Bulletin 114, (2002). 547558.Google Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., and Hughen, K.A. Synchronicity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, (2003). 13611364.Google Scholar
Lin, H.-L., Peterson, L.C., Overpeck, J.T., Trumbore, S.E., and Murray, D.W. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera: high-resolution records from the anoxic Cariaco Basin, Venezuela. Paleoceanography 12, (1997). 415427.CrossRefGoogle Scholar
Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Heusser, L.E., Schluchter, C., Marchant, D.R., and Denton, G.H. Interhemispheric correlation of late pleistocene glacial events. Science 269, (1995). 15411549.Google Scholar
Mahaney, W.C., Milner, M.W., Voros, J., Kalm, V., Hutt, G., Bezada, M., Hancock, R.G.V., and Aufreiter, S. Stratotype for the Mérida Glaciation at Pueblo Llano in the northern Venezuelan Andes. Journal of South American Earth Sciences 13, (2000). 761774.CrossRefGoogle Scholar
Mann, D.H., and Hamilton, T.D. Late pleistocene and holocene paleoenvironments of the north Pacific coast. Quaternary Science Reviews 14, (1995). 449471.CrossRefGoogle Scholar
Mark, B.G., Harrison, S., Spessa, A., New, M., Evans, D.J.A., and Helmens, K.F. Tropical snowline changes at the last glacial maximum: a global assessment. Quaternary International 138–139, (2005). 168201.CrossRefGoogle Scholar
Meirding, T.C. Late pleistocene glacial equilibrium-line altitudes in the Colorado front range: a comparison of methods. Quaternary Research 18, (1982). 289310.CrossRefGoogle Scholar
Mix, A.C., Morey, A.E., Pisias, N.G., and Hostetler, S.W. Foraminifera faunal estimates of paleotemperature: circumventing the no-analog problem yields cool ice age tropics. Paleoceanography 14, (1999). 350359.CrossRefGoogle Scholar
Mölg, T., Georges, C., and Kaser, G. The contribution of increased incoming shortwave radiation to the retreat of the Rwenzori Glaciers, East Africa, during the 20th century. International Journal of Climatology 23, (2003). 291303.Google Scholar
Monasterio, M. Adaptive Strategies of Espeletia in the Andean Desert Paramo. (1986). Oxford University Press, London.Google Scholar
Monasterio, M., and Reyes, S. Diversidad ambiental y variacion de la vegetacion en los páramos de los Andes Venezolanos. Monasterio, M. Estudios Ecologicos en los Páramos Andinos. (1980). Ediciones de la Universidad de Los Andes, Merida, Venezuela. 4791.Google Scholar
Oerlemans, J. Glaciers and Climate Change. (2001). A.A. Balkema Publishers, Amsterdam.Google Scholar
Ohmura, A., Kasser, P., and Funk, M. Climate at the equilibrium line of glaciers. Journal of Glaciology 38, (1992). 397411.Google Scholar
Osmaston, H. Estimates of glacier equilibrium line altitudes by the Area × Altitude, the Area × Altitude Balance Ratio and the Area × Altitude Balance Index methods and their validation. Quaternary International 138–139, (2005). 2231.Google Scholar
Osmaston, H. Should quaternary sea-level changes be used to correct glacier ELAs, vegetation belt altitudes and sea level temperatures for inferring climate changes. Quaternary Research 65, (2006). 244251.Google Scholar
Paterson, W.S.B. The Physics of Glaciers. (1981). Pergamon Press Inc., New York.Google Scholar
Pierrehumbert, R.T. Huascaran δ18O as an indicator of tropical climate during the last glacial maximum. Geophysical Research Letters 26, (1999). 13451348.Google Scholar
Polissar, P.J., (2005). Unpublished PhD. Dissertation. University of Massachusetts at Amherst, .Google Scholar
Porter, S.C. Snowline depression in the tropics during the Last Glaciation. Quaternary Science Reviews 20, (2001). 10671091.CrossRefGoogle Scholar
Pulwarty, R.S., Barry, R.G., Hurst, C.M., Sellinger, K., and Mogollon, L.F. Precipitation in the Venezuelan Andes in the context of regional climate. Meteorology and Atmospheric Physics 67, (1998). 217237.Google Scholar
Rind, D., and Peteet, D. Terrestrial conditions at the Last Glacial Maximum and CLIMAP sea-surface temperature estimates: are they consistent?. Quaternary Research 24, (1985). 122.CrossRefGoogle Scholar
Rull, V. Palaeoecology of pleniglacial sediments from the Venezuelan Andes. palynological record of El Caballo stadial, sedimentation rates and glacier retreat. Review of Palaeobotany and Palynology 99, (1998). 95114.CrossRefGoogle Scholar
Salgado-Labouriau, M.L. Modern pollen deposition in the Venezuelan Andes. Grana 18, (1979). 5368.Google Scholar
Salgado-Labouriau, M.L., Bradley, R.S., Yuretich, R., and Weingarten, B. Paleoecological analysis of the sediments of Lake Mucubaji, Venezuelan Andes. Journal of Biogeography 19, (1992). 317327.Google Scholar
Schubert, C. Glaciation of the Sierra de Santo Domingo, Venezuelan Andes. Quaternaria 13, (1970). 225246.Google Scholar
Schubert, C. Geomorphology and glacier retreat in the Pico Bolivar area, Sierra Nevada de Merida, Venezuela. Zeitschrift für Gletscherkunde und Glazialgeologie VIII, (1972). 189202.Google Scholar
Schubert, C. Late Pleistocene Mérida Glaciation, Venezuelan Andes. Boreas 3, (1974). 147151.Google Scholar
Schubert, C. La Extension de los Glaciares Pleistocenes en la Sierra Nevada de Merida. Boletín de la Sociedad Venezolana de Ciencias Naturales 41, (1987). 299308.Google Scholar
Schubert, C. The Pleistocene and recent extent of the glaciers of the Sierra Nevada de Merida, Venezuela. Erdwissenschaftliche Forschung 18, (1984). 269278.Google Scholar
Schubert, C. The glaciers of the Sierra Nevada de Merida (Venezuela): a photographic comparison of recent deglaciation. Erdkunde 46, (1992). 5864.Google Scholar
Schubert, C. Glaciers of Venezuela. Glaciers of South America. USGS Professional Paper 1386-I. (1998). Google Scholar
Schubert, C., and Clapperton, C. Quaternary Glaciations in the Northern Andes (Venezuela, Colombia and Ecuador). Quaternary Science Reviews 9, (1990). 123135.Google Scholar
Schubert, C., and Rinaldi, M. Nuevos Datos Sobre la Cronologia del Estadio Tardio de la Glaciacion Merida, Andes Venezolanos. Acta Cientifica 38, (1987). Google Scholar
Schubert, C., and Valastro, S. Late Pleistsocene glaciation of Paramo de La Culata, north-central Venzuelan Andes. Sonderdruck aus der Geologischen Rundschau 63, (1974). 517537.Google Scholar
Seltzer, G.O. Late Quaternary glaciation of the Cordillera Real, Bolivia. Journal of Quaternary Science 7, (1992). 8798.Google Scholar
Seltzer, G.O. A lacustrine record of late pleistocene climatic change in the subtropical Andes. Boreas 23, (1994). 105111.Google Scholar
Seltzer, G., Rodbell, D.T., Baker, P.A., Fritz, S., Tapia, P.M., Rowe, H.D., and Dunbar, R.B. Early warming of tropical South America at the last glacial–interglacial transition. Science 296, (2002). 16851686.Google Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., and Finkel, R.C. Early local last glacial maximum in the tropical Andes. Science 308, (2005). 678681.CrossRefGoogle ScholarPubMed
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., and Bonani, G. Cooling of Tropical Brazil (5°C) during the last glacial maximum. Science 269, (1995). 379383.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., and Liu, K.-b. Late glacial stage and holocene tropical ice core records from Huascarán, Peru. Science 269, (1995). 4650.CrossRefGoogle ScholarPubMed
Weingarten, B., Salgado-Labouriau, M.L., Yuretich, R., and Bradley, R. Late quaternary environmental history of the Venezuelan Andes. Yuretich, R. Late Quaternary Climatic Fluctuations of the Venezuelan Andes. (1991). University of Massachusetts, Amherst, MA. 6394.Google Scholar