Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T13:48:18.009Z Has data issue: false hasContentIssue false

Late glacial and Holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada)

Published online by Cambridge University Press:  11 August 2012

Michael Fritz*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Department of Periglacial Research, Telegrafenberg A43, 14473 Potsdam, Germany
Ulrike Herzschuh
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Department of Periglacial Research, Telegrafenberg A43, 14473 Potsdam, Germany Potsdam University, Institute of Earth and Environmental Sciences, Karl-Liebknecht-Str. 24–25, 14476 Potsdam-Golm, Germany
Sebastian Wetterich
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Department of Periglacial Research, Telegrafenberg A43, 14473 Potsdam, Germany
Hugues Lantuit
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Department of Periglacial Research, Telegrafenberg A43, 14473 Potsdam, Germany
Gregory P. De Pascale
Affiliation:
University of Canterbury, Department of Geological Sciences, Private Bag 4800, Christchurch 8140, New Zealand
Wayne H. Pollard
Affiliation:
McGill University, Department of Geography, 805 Sherbrooke St. West, H3A2K6 Montreal, Quebec, Canada
Lutz Schirrmeister
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Department of Periglacial Research, Telegrafenberg A43, 14473 Potsdam, Germany
*
Corresponding author. Fax: + 49 331 288 2188. Email Address:Michael.Fritz@awi.de

Abstract

Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since ~ 16 cal ka BP. Herb-dominated tundra persisted until ~ 14.7 cal ka BP with mean July air temperatures ≤ 5°C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bølling/Allerød interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of ~ 1.5°C (~ 2.5 to 3.0°C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Betula shrub tundra from ~ 5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Stafford, T.W. Jr. Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quaternary Research 45, (1996). 300311.Google Scholar
Abbott, M.B., Finney, B.P., Edwards, M.E., and Kelts, K.R. Lake-level reconstruction and paleohydrology of Birch Lake, central Alaska, based on seismic reflection profiles and core transects. Quaternary Research 53, (2000). 154166.Google Scholar
Anderson, P.M. Late quaternary pollen records from the Kobuk and Noatak river drainages, northwestern Alaska. Quaternary Research 29, (1988). 263276.Google Scholar
Anderson, L., Abbott, M.B., Finney, B.P., and Edwards, M.E. Palaeohydrology of the southwest Yukon Territory, Canada, based on multiproxy analyses of lake sediment cores from a depth transect. The Holocene 15, (2005). 11721183.Google Scholar
Anderson, L.L., Hu, F.S., Nelson, D.M., Petit, R.J., and Paige, K.N. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences 103, (2006). 1244712450.CrossRefGoogle Scholar
Bartlein, P.J., Anderson, P.M., Edwards, M.E., and McDowell, P.F. A framework for interpreting paleoclimatic variations in Eastern Beringia. Quaternary International 10–12, (1991). 7383.CrossRefGoogle Scholar
Beug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. (2004). Dr. Friedrich Pfeil Verlag, Munich. (in German) Google Scholar
Bigelow, N.H., and Edwards, M.E. A 14,000 yr paleoenvironmental record from Windmill Lake, Central Alaska: Late glacial and Holocene vegetation in the Alaska range. Quaternary Science Reviews 20, (2001). 203215.Google Scholar
Briner, J.P., Kaufman, D.S., Werner, A., Caffee, M., Levy, L., Manley, W.F., Kaplan, M.R., and Finkel, R.C. Glacier readvance during the late glacial (Younger Dryas?) in the Ahklun Mountains, southwestern Alaska. Geology 30, (2002). 679682.Google Scholar
Brubaker, L.B., Anderson, P.M., and Hu, F.S. Vegetation ecotone dynamics in southwest Alaska during the Late Quaternary. Quaternary Science Reviews 20, (2001). 175188.Google Scholar
Brubaker, L.B., Anderson, P.M., Edwards, M.E., and Lozhkin, A.V. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32, (2005). 833848.Google Scholar
Bunbury, J., and Gajewski, K. Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quaternary Science Reviews 28, (2009). 354369.Google Scholar
Burn, C.R. Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. Canadian Journal of Earth Sciences 34, (1997). 912925.CrossRefGoogle Scholar
Cwynar, L.C. A Late-Quaternary vegetation history from Hanging Lake, northern Yukon. Ecological Monographs 52, (1982). 124.Google Scholar
Cwynar, L.C. Late Quaternary vegetation history of Kettlehole Pond, southwestern Yukon. Canadian Journal of Forest Research 18, (1988). 12701279.CrossRefGoogle Scholar
Cwynar, L.C., and Spear, R.W. Paleovegetation and paleoclimatic changes in the Yukon at 6 ka BP. Géographie Physique et Quaternaire 49, (1995). 2935.Google Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, (1964). 436468.Google Scholar
Duk-Rodkin, A., and Hughes, O.L. Tertiary-quaternary drainage of the pre-glacial Mackenzie basin. Quaternary International 22–23, (1994). 221241.Google Scholar
Duk-Rodkin, A., and Hughes, O.L. Quaternary geology of the northwest part of the central Mackenzie Valley corridor, Northwest Territories. Geological Survey of Canada Bulletin 458, (1995). 45p Google Scholar
Duk-Rodkin, A., Barendregt, R.W., Froese, D.G., Weber, F., Enkin, R., Smith, I., Zazula, G.D., Waters, P., and Klassen, R. Timing and extent of Plio-Pleistocene glaciations in northwestern Canada and east-central Alaska. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations—Extent and Chronology, Part II: North America. (2004). Elsevier, Amsterdam. 313345.Google Scholar
Dyke, A.S., and Prest, V.K. Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géographie Physique et Quaternaire 41, (1987). 237263.Google Scholar
Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., and Veillette, J.J. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews 21, (2002). 931.Google Scholar
Dyke, A.S., Moore, A., and Robertson, L. Deglaciation of North America. Geological Survey of Canada Open File 1574. (2003). Google Scholar
Elias, S.A. Late Pleistocene climates of Beringia, based on analysis of fossil beetles. Quaternary Research 53, (2000). 229235.Google Scholar
Engstrom, D.R., Hansen, B.C.S., Wright, H.E. Jr. A possible Younger Dryas record in southeastern Alaska. Science 250, (1990). 13831385.CrossRefGoogle ScholarPubMed
Engstrom, D.R., Fritz, S.C., Almendinger, J.E., and Juggins, S. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, (2000). 161166.Google Scholar
Environment Canada http://climate.weatheroffice.ec.gc.ca//index_e.html(2000). (accessed June 2011) Google Scholar
Fægri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). The Blackwell Press, New Jersey.Google Scholar
Fallu, M.-A., Pienitz, R., Walker, I.R., and Overpeck, J. AMS 14C dating of tundra lake sediments using chironomid head capsules. Journal of Paleolimnology 31, (2004). 1122.Google Scholar
French, H.M., and Harry, D.G. Pediments and cold-climate conditions, Barn Mountains, unglaciated northern Yukon, Canada. Gegrafiska Annaler, Series A, Physical Geography 74, (1992). 145157.Google Scholar
Fritz, M., Wetterich, S., Schirrmeister, L., Meyer, H., Lantuit, H., Preusser, F., and Pollard, W.H. Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 319–320, (2012). 2845.Google Scholar
Grimm, E.C. TILIA and TILIAGRAPH Software. (1991). Illinois State Museum, Springfield.Google Scholar
Grimm, E.C. North American Pollen Database. (2000). IGBP PAGES/World Data Centre for Paleoclimatology. NOAA/NGDC Paleoclimatology Program, Boulder, USA. http://www.ngdc.noaa.gov/paleo/pollen.html (accessed June 2011) Google Scholar
Grootes, P.M., and Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 10-5-year time resolution. Journal of Geophysical Research 102, (1997). 2645526470.Google Scholar
Guthrie, R.D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews 20, (2001). 549574.Google Scholar
Hill, P.R., Mudie, P.J., Moran, K., and Blasco, S.M. A sea-level curve for the Canadian Beaufort Shelf. Canadian Journal of Earth Sciences 22, (1985). 13831393.Google Scholar
Hopkins, D.M. Aspects of the paleogeography of Beringia during the Late Pleistocene. Hopkins, D.M., Matthews, J.V. Jr., Schweger, Ch.E., and Young, S.B. Paleoecology of Beringia. (1982). Academic Press, New York. 328.Google Scholar
Horita, J., Ueda, A., Mizukami, K., and Takaton, I. Automatic δD and δ18O analyses of multi-water samples using H2- and CO2–water equilibration methods with a common equilibration set-up. Applied Radiation and Isotopes 40, (1989). 801805.Google Scholar
Hu, F.S., Lee, B.Y., Kaufman, D.S., Yoneji, S., Nelson, D.M., and Henne, P.D. Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation. Global Change Biology 8, (2002). 11561163.Google Scholar
Hu, F.S., Nelson, D.M., Clarke, G.H., Rühland, K.M., Huang, Y., Kaufman, D.S., and Smol, J.P. Abrupt climatic events during the last glacial–interglacial transition in Alaska. Geophysical Research Letters 33, (2006). L18708 Google Scholar
Hughes, O., (1972). Surficial geology of northern Yukon Territory and northwestern District of Mackenzie. Northwest Territories, Geological Survey of Canada, Paper 6936. Map 1319 A.Google Scholar
Hultén, E. Outline of the History of Arctic and Boreal Biota during the Quaternary Period. (1937). Bokförlags Aktiebolaget Thule, Stockholm.Google Scholar
Huntley, B., and Prentice, I.C. July temperatures in Europe from pollen data, 6000 years before present. Science 241, (1988). 687690.Google Scholar
Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, (2006). 508511.Google Scholar
IAEA (International Atomic Energy Agency) Isotope Hydrology Information System. The ISOHIS Database. (2006). http://www.iaea.org/water. (accessed June 2011) Google Scholar
Irvine, F., Cwynar, L., Vermaire, J., and Rees, A.H. Midge-inferred temperature reconstructions and vegetation change over the last 15,000 years from Trout Lake, northern Yukon Territory, eastern Beringia. Journal of Paleolimnology 48, (2012). 133146.Google Scholar
Juggins, S. C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. (2003). University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdottir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Rühland, K., Smol, J.P., Steig, E.J., and Wolfe, B.B. Holocene thermal maximum in the western Arctic (0–180°W). Quaternary Science Reviews 23, (2004). 529560.Google Scholar
Keigwin, L., Donnelly, J.P., Cook, M.S., Driscoll, N.W., and Brigham-Grette, J. Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology 34, (2006). 861864.Google Scholar
Kokorowski, H.D., Anderson, P.M., Mock, C.J., and Lozhkin, A.V. A re-evaluation and spatial analysis of evidence for a Younger Dryas climatic reversal in Beringia. Quaternary Science Reviews 27, (2008). 17101722.CrossRefGoogle Scholar
Kurek, J., Cwynar, L.C., and Vermaire, J.C. A late Quaternary paleotemperature record from Hanging Lake, northern Yukon Territory, eastern Beringia. Quaternary Research 72, (2009). 246257.Google Scholar
Lacourse, T., and Gajewski, K. Late Quaternary vegetation history of Sulphur Lake, southwest Yukon Territory, Canada. Arctic 63, (2000). 2735.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, (2004). 261285.CrossRefGoogle Scholar
Lepš, J., and Šmilauer, P. Multivariate analysis of ecological data using CANOCO. (2003). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Mann, D.H., Peteet, D.M., Reanier, R.E., and Kunz, M.L. Responses of an arctic landscape to Lateglacial and early Holocene climatic changes: The importance of moisture. Quaternary Science Reviews 21, (2002). 9971021.Google Scholar
Mason, O.K., Bowers, P.M., and Hopkins, D.M. The early Holocene Milankovitch thermal maximum and humans: Adverse conditions for the Denali complex of eastern Beringia. Quaternary Science Reviews 20, (2001). 525548.CrossRefGoogle Scholar
McAndrews, J.H., Berti, A.A., and Norris, G. Key to the Quaternary pollen and spores of the Great Lakes region. (1973). The University of Toronto Press, Toronto.Google Scholar
Meyer, H., Schirrmeister, L., Yoshikawa, K., Opel, T., Wetterich, S., Hubberten, H.-W., and Brown, J. Permafrost evidence for severe winter cooling during the Younger Dryas in northern Alaska. Geophysical Research Letters 37, (2010). L03501 Google Scholar
Meyers, P.A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, (1994). 289300.Google Scholar
Mikolajewicz, U., Crowley, T.J., Schiller, A., and Voss, R. Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 387, (1997). 384387.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen Analysis. (1991). Blackwell Science, Oxford.Google Scholar
Morlan, R.E., and Cinq-Mars, J. Ancient Beringians: Human occupation in the Late Pleistocene of Alaska and the Yukon Territory. Hopkins, D.M., Matthews, J.V. Jr., Schweger, Ch.E., and Young, S.B. Paleoecology of Beringia. (1982). Academic Press, New York. 353381.Google Scholar
Murton, J.B., Frechen, M., and Maddy, D. Luminescence dating of mid- to Late Wisconsinan aeolian sand as a constraint on the last advance of the Laurentide Ice Sheet across the Tuktoyaktuk Coastlands, western Arctic Canada. Canadian Journal of Earth Sciences 44, (2007). 857869.Google Scholar
Nelson, R.E., and Carter, L.D. Paleoenvironmental analysis of insects and extralimital Populus from an early Holocene site on the Arctic slope of Alaska, U.S.A. Arctic and Alpine Research 19, (1987). 230241.Google Scholar
Norris, K., (1977). Blow River and Davidson Mountains, Yukon Territory–District of Mackenzie. Geological Survey of Canada, Map 1516A.Google Scholar
Pienitz, R., Smol, J.P., Last, W.M., Leavitt, P.R., and Cumming, B.F. Multi-proxy Holocene palaeoclimatic record from a saline lake in the Canadian subarctic. The Holocene 10, (2000). 673686.Google Scholar
Rampton, V.N. Late Quaternary vegetational and climatic history of the Snag-Klutlan area, southwest Yukon Territory, Canada. Geological Society of America Bulletin 82, (1971). 959978.Google Scholar
Rampton, V.N. Quaternary geology of the Yukon Coastal Plain. Geological Survey of Canada Bulletin 317, (1982). (49 pp.) Google Scholar
Reimer, P.J., Baillie, M.G., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. Intcal09 and marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Ritchie, J.C. Past and Present Vegetation of the Far Northwest of Canada. (1984). University of Toronto Press, Toronto.Google Scholar
Ritchie, J.C., Cwynar, L.C., and Spear, R.W. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305, (1983). 126128.Google Scholar
Schell, T.M., Scott, D.B., Rochon, A., and Blasco, S. Late Quaternary paleoceanography and paleo-sea ice conditions in the Mackenzie Trough and Canyon, Beaufort Sea. Canadian Journal of Earth Sciences 45, (2008). 13991415.Google Scholar
Scott, D.B., Schell, T., St-Onge, G., Rochon, A., and Blasco, S. Foraminiferal assemblage changes over the last 15,000 years on the Mackenzie-Beaufort Sea Slope and Amundsen Gulf, Canada: Implications for past sea ice conditions. Paleoceanography 24, (2009). PA2219 Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Szeicz, J.M., MacDonald, G.M., and Duk-Rodkin, A. Late Quaternary vegetation history of the central Mackenzie Mountains, Northwest Territories, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 113, (1995). 351371.Google Scholar
ter Braak, C.J.F., and Šmilauer, P. CANOCO Reference Manual and CANODRAW for Windows User's Guide: Software for Canonical Community Ordination (Version 4.5). (2002). Microcomputer Power, New York.Google Scholar
Vardy, S.R., Warner, B.G., and Aravena, R. Holocene climate effects on the development of a peatland on the Tuktoyaktuk Peninsula, Northwest Territories. Quaternary Research 47, (1997). 90104.Google Scholar
Vermaire, J.C., and Cwynar, L.C. A revised late-Quaternary vegetation history of the unglaciated southwestern Yukon Territory, Canada, from Antifreeze and Eikland ponds. Canadian Journal of Earth Sciences 47, (2010). 7588.Google Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., and Bunbury, J. Low- and high-frequency climate variability in eastern Beringia during the past 25000 years. Canadian Journal of Earth Sciences 45, (2008). 14351453.Google Scholar
Wahl, H.E., Fraser, D.B., Harvey, R.C., and Maxwell, J.B. Climate of Yukon. Environment Canada, Atmospheric Environment Service, Climatological Studies 40, (1987). 1323.Google Scholar
Wang, X.-C., and Geurts, M.-A. Late Quaternary pollen records and vegetation history of the southwest Yukon Territory: A review. Géographie Physique et Quaternaire 45, (1991). 175193.Google Scholar
Welsh, S.L., and Rigby, J.K. Botanical and physiographic reconnaissance of northern Yukon. Biological Series 14, (1971). (64 pp.) Google Scholar
Whitmore, J., Gajewski, K., Sawada, M., Williams, J.W., Minckley, T., Shuman, B., Bartlein, P.J., Webb, T. III, Viau, A.E., Shafer, S., Anderson, P., and Brubaker, L.B. A North American modern pollen database for multi-scale paleoecological and paleoclimatic applications. Quaternary Science Reviews 24, (2005). 18281848.Google Scholar
Yu, Z., Walker, K.N., Evenson, E.B., and Hajdas, I. Lateglacial and early Holocene climate oscillations in the Matanuska Valley, south-central Alaska. Quaternary Science Reviews 27, (2008). 148161.Google Scholar
Supplementary material: File

Fritz et al. Supplementary Material

Supplementary Material

Download Fritz et al. Supplementary Material(File)
File 723 Bytes