Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T12:45:34.499Z Has data issue: false hasContentIssue false

Late Holocene sea-level changes and isostasy in western Denmark

Published online by Cambridge University Press:  20 January 2017

W. Roland Gehrels*
Affiliation:
School of Geography, University of Plymouth, Plymouth, PL4 8AA, UK
Katie Szkornik
Affiliation:
School of Geography, University of Plymouth, Plymouth, PL4 8AA, UK
Jesper Bartholdy
Affiliation:
Institute of Geography, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
Jason R. Kirby
Affiliation:
School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
Sarah L. Bradley
Affiliation:
Department of Earth Sciences, University of Durham, Durham, DH1 3LE, UK
William A. Marshall
Affiliation:
School of Geography, University of Plymouth, Plymouth, PL4 8AA, UK
Jan Heinemeier
Affiliation:
AMS 14C Dating Centre, Department of Physics and Astronomy, University of Århus, DK-8000 Århus C, Denmark
Jørn B.T. Pedersen
Affiliation:
Institute of Geography, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
*
Corresponding author. Fax: +44 1752 233054. E-mail address:wrgehrels@plymouth.ac.uk (W.R. Gehrels).

Abstract

Cores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, T., Nielsen, N., and Nielsen, J. Skallingen—Origin and evolution of a barrier spit. Meddelelser fra Skalling-Laboratoriet 35, (1995). 185.Google Scholar
Bartholdy, J. Transport of suspended matter in a bar-built Danish estuary. Estuarine, Coastal and Shelf Science 18, (1984). 527541.CrossRefGoogle Scholar
Bartholdy, J., and Folving, S. Sediment classification and surface type mapping in the Danish Wadden Sea by remote sensing. Netherlands Journal of Sea Research 20, (1986). 337345.CrossRefGoogle Scholar
Bartholdy, J., and Madsen, P.P. Accumulation of fine-grained material in a Danish tidal area. Marine Geology 67, (1985). 121137.CrossRefGoogle Scholar
Bartholdy, J., Christiansen, C., and Kunzendorf, H. Long term variations in backbarrier salt marsh deposition on the Skallingen peninsula—The Danish Wadden Sea. Marine Geology 203, (2004). 121.CrossRefGoogle Scholar
Behre, K.E. Coastal development, sea-level change and settlement history during the later Holocene in the Clay District of Lower Saxony (Niedersachsen), northern Germany. Quaternary International 112, (2005). 3753.CrossRefGoogle Scholar
Berglund, B. Littoral transgressions at Blekinge, south Sweden. A preliminary report. Geologiska Föreningens i Stockholm Förhandlingar 93, (1971). 625652.CrossRefGoogle Scholar
Clemmensen, L.B., Andreasen, F., Nielsen, S.T., and Sten, E. The late Holocene coastal Dunefield at Vejers, Denmark: characteristics, sand budget and depositional dynamics. Geomorphology 17, (1996). 7998.CrossRefGoogle Scholar
Clemmensen, L.B., Richardt, N., and Andersen, C. Holocene sea-level variation and spit development: data from Skagen Odde Denmark. The Holocene 11, (2001). 323331.CrossRefGoogle Scholar
Cleve–Euler, , (1951). –(1955). Die Diatomeen von Schweden und Finland. Kungliga Suenska Vetenskoupsakademiens Handligar, Series 4.Google Scholar
Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., and Woodworth, P.L. Changes in sea level. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (2001). Cambridge University Press, Cambridgepp. 639693.Google Scholar
Davis, R.A., Bartholdy, J., Pejrup, M., and Nielsen, N. Stratigraphy of Skallingen—A Holocene barrier in the Danish Wadden Sea. Aarhus Geoscience 7, (1997). 919.Google Scholar
Davis, R.A., Bartholdy, J., and Lykke-Andersen, H. Sedimentary depositional environments and Holocene geologic evolution of the northern Danish Wadden Sea. Korean Society of Oceanography Special Publication. Proceedings of Tidalites 2000, (2001). 6375.Google Scholar
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., and Chappell, J. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163, (1998). 327342.CrossRefGoogle Scholar
Gehrels, W.R. Intertidal foraminifera as paleoenvironmental indicators. Chapter 5.. Haslett, S.K. Quaternary Environmental Micropaleontology. (2002). Arnold Publishers, 91114.Google Scholar
Gehrels, W.R., and Newman, S.W.G. Salt-marsh foraminifera in Ho Bugt, western Denmark, and their use as sea-level indicators. Danish Journal of Geography 104, (2004). 4958.CrossRefGoogle Scholar
Gehrels, W.R., Belknap, D.F., Pearce, B.R., and Gong, B. Modeling the contribution of M2 tidal amplification to the Holocene rise of mean high water in the Gulf of Maine and the Bay of Fundy. Marine Geology 124, (1995). 7185.CrossRefGoogle Scholar
Grimm, E. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the methods of incremental sum of squares. Computers and Geoscience 13, (1987). 1315.CrossRefGoogle Scholar
Hartley, B. An Atlas of British Diatoms. (1996). Biopress Limited, Bristol, UK.Google Scholar
Jacobsen, N.K. Træk af Tøndermarskens naturgeografi med særligt henblik på morfogenesen (summary in English). Folia Geographica Danica 7, (1964). 299350.Google Scholar
Jessen, A. (1920). Stenalderhavets Udbredelse I det nordlige Jylland. Danmarks Geologiske Undersøgelse II, 35, København, C.A. Reitzel.CrossRefGoogle Scholar
Jonassen, H. Bidrag til Filsøegnens naturhistorie. Meddelelser Fra Dansk Geologisk Forening 13, (1957). 192205.Google Scholar
Krammer, K., and Lange-Bertalot, H. Bacillariophyceae, 3.Teil, Centrales, Fragilariaceae, Eunotiaceae. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. Süsswasserflora von Mitteleuropa. Band 2/3. (1991). Gustav Fischer Verlag, Stuttgart.Google Scholar
Krammer, K., and Lange-Bertalot, H. Bacillariophyceae 4.Teil, Achnantaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., and Mollenhauer, D. Süsswasserflora von Mitteleuropa. Band 2/4. (1991). Gustav Fischer Verlag, Stuttgart.Google Scholar
Krammer, K., and Lange-Bertalot, H. Bacillariophyceae, 1.Teil, Naviculaceae. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. Süsswasserflora von Mitteleuropa, Band 2/1. (1997). Gustav Fischer, Jena.Google Scholar
Krammer, K., and Lange-Bertalot, H. Bacillariophyceae, 2.Teil Bacillariaceae, Epithemiaceae, Surirellaceae. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. Süsswasserflora von Mitteleuropa, Band 2/2. (1997). Gustav Fischer, Jena.Google Scholar
Krog, H. Late Pleistocene and Holocene shorelines in Western Denmark. Oele, E., Schuttenhelm, R.T.E., and Wiggers, A.J. The Quaternary History of the North Sea, Acta Universitatis Upsaliensis: Symposia Universitatis Upsaliensis. (1979). Annum Quingentesimum Celebrantis 2, Uppsala. 7583.Google Scholar
Lambeck, K. Sea-level change along the French Atlantic and Channel coasts since the time of the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 129, (1997). 122.CrossRefGoogle Scholar
Lambeck, K., and Bard, E. Sea-level change along the French Mediterranean coast for the past 30,000 years. Earth and Planetary Science Letters 175, (2000). 203222.CrossRefGoogle Scholar
Lambeck, K., Smither, C., and Ekman, M. Tests of glacial rebound models for Fennoscandinavia based on instrumented sea- and lake-level records. Geophysical Journal International 135, (1998). 275387.CrossRefGoogle Scholar
Lambeck, K., Smither, C., and Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophysical Journal International 134, (1998). 102144.CrossRefGoogle Scholar
Lampe, R., and Janke, W. The Holocene sea level rise in the southern Baltic as reflected in coastal peat sequences. Polish Geological Institute Special Papers 11, (2004). 1930.Google Scholar
Mertz, E.L. Oversigt over de Sen-og Postglaciale Niveauforandringer i Danmark. Danmarks Geologiske Undersøgelse II Vol. 41, (1924). København, C.A. Reitzel.Google Scholar
Milne, G.A., and Mitrovica, J.X. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quaternary Science Reviews 21, (2002). 21792190.Google Scholar
Milne, G.A., Shennan, I., Youngs, B.A.R., Waugh, A.I., Teferle, F.N., Bingley, R.M., Bassett, S.E., Cuthbert-Brown, C., and Bradley, S.L. Modelling the glacial isostatic adjustment of the UK region. Philosophical Transactions of the Royal Society A 364, (2006). 931948.CrossRefGoogle ScholarPubMed
Morhange, C., and Pirazzoli, P.A. Mid-Holocene emergence of southern Tunisian coasts. Marine Geology 220, (2005). 205213.CrossRefGoogle Scholar
Mörner, N.-A. The late Quaternary history of the Kattegatt Sea and the Swedish West Coast; deglaciation, shoreline displacement, isostasy and eustasy. Sveriges Geologisk Undersökning C-640 (1969). 1487.Google Scholar
Mörner, N.-A. Eustatic changes during the last 8,000 years in view of radiocarbon calibration and new information from the Kattegatt Region and other Northwestern European coastal areas. Palaeogeography, Palaeoclimatology, Palaeoecology 19, (1976). 6385.CrossRefGoogle Scholar
Mörner, N.-A. The northwest European "sea-level laboratory" and regional Holocene eustasy. Palaeogeography, Palaeoclimatology, Palaeoecology 29, (1979). 281300.CrossRefGoogle Scholar
Palmer, A.J.M., and Abbott, W.H. Diatoms as indicators of sea-level change. van de Plassche, O. Sea-Level Research: A Manual for the Collection and Evaluation of Data. (1986). GeoBooks, Norwich. 457487.Google Scholar
Peltier, W.R. On eustatic sea level history: last glacial maximum to Holocene. Quaternary Science Reviews 21, (2002). 377396.CrossRefGoogle Scholar
Petersen, K.S. Den postglaciale transgression og molluskfaunaen i Tude A-omradet, Store Baelt, Denmark. Danmarks Geologiske Undersøgelse Årbog 1977, (1978). 3952.Google Scholar
Petersen, K.S. The Holocene marine transgression and its molluscan fauna in the Skagerrak-Limfjord region, Denmark. Nio, S.D., Schuttenhelm, R.T.E., Weering, T.C.E. Holocene Marine Sedimentation in the North Sea Basin. International Association of Sedimentology Vol. 5, (1981). 497503. Special Publication CrossRefGoogle Scholar
Petersen, K.S. Late Weichselian and Holocene marine transgressions in Northern Jutland. Denmark Eiszeitalter und Gegenwar 35, (1985). 7178.Google Scholar
Petersen, K.S. The late Quaternary history of Denmark, the Weichselian ice sheets and land/sea configuration in the later Pleistocene. Journal of Danish Archaeology 4, (1985). 722.CrossRefGoogle Scholar
Petersen, K.S. Limfjordstangerne. Holocæne marine miljøudvikling. DGU Customer's Report 85, (1994). Google Scholar
Petersen, K.S., and Rasmussen, K.L. Late Weichselian and Holocene changes in the marine environment—With examples from North West Denmark. Fischer, A. Man and Sea in the Mesolithic: Coastal Settlement Above and Below Present Sea Level. (1995). Oxbow Books, Oxford. 3538.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 26 - 0 ka BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Shennan, I. Holocene sea-level changes in the North Sea region. Tooley, M., and Shennan, J. Sea-Level Changes. (1987). 109151.Google Scholar
Shennan, I. Holocene crustal movements and sea-level changes in Great Britain. Journal of Quaternary Science 4, (1989). 7789.CrossRefGoogle Scholar
Shennan, I., Horton, B.P., Innes, J.B., Gehrels, W.R., Lloyd, J.M., McArthur, J., and Rutherford, M.M. Late Quaternary sea-level changes, crustal movements and coastal evolution in Northumberland, UK. Journal of Quaternary Science 15, (2000). 215237.3.0.CO;2-#>CrossRefGoogle Scholar
Shennan, I., Peltier, W.R., Drummond, R., and Horton, B.P. Global to local scale parameters determining relative sea-level changes and the post-glacial isostatic adjustment of Great Britain. Quaternary Science Reviews 21, (2002). 397408.CrossRefGoogle Scholar
Tooley, M.J. Sea-level changes during the last 9000 years in Northwest England. Geographical Journal 140, (1974). 1842.CrossRefGoogle Scholar
Tushingham, A.M., and Peltier, W.R. ICE-3G: a new global model of late Pleistocene deglaciation based on geophysical predictions of post-glacial relative sea level change. Journal of Geophysical Research 96, (1991). 44974523.CrossRefGoogle Scholar
van der Werff, A., and Huls, H. Diatomeeenflora van Nederland. (1976). Otto Koeltz Science Publishers, Koenigstein, Germany.Google Scholar