Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:33:35.926Z Has data issue: false hasContentIssue false

Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees

Published online by Cambridge University Press:  20 January 2017

David Palacios*
Affiliation:
Department of Geography, Universidad Complutense de Madrid, 28.040 Madrid, Spain
Nuria de Andrés
Affiliation:
Department of Geography, Universidad Complutense de Madrid, 28.040 Madrid, Spain
Juan I. López-Moreno
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Campus de Aula Dei, P.O. Box 13.034, 50.080 Zaragoza, Spain
José M. García-Ruiz
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Campus de Aula Dei, P.O. Box 13.034, 50.080 Zaragoza, Spain
*
*Corresponding author.E-mail address:davidp@ucm.es (D. Palacios).

Abstract

Deglaciation processes in the upper Gállego Valley, central–southern Pyrenees, were studied using geomorphological mapping and 36Cl cosmogenic dating of moraine and rock glacier boulders, as well as polished bedrock. Although the precise position of the Gállego Glacier during the global last glacial maximum is not known, there is evidence that ice tongues retreated to the headwaters, which caused subdivision of the main glacier into a number of individual glaciers prior to 17 ka. A range of ages (16 to 11 ka) was found among three tributary valleys within the general trend of deglaciation. The retreat rate to cirque was estimated to be relatively rapid (approximately 5 km per ka). The mapped glacial sedimentology and geomorphology appears to support the occurrence of multiple minor advances and retreats, or periods of stasis during the late deglaciation. Geomorphological and geological differences among the tributary valleys, and error estimates associated with the results obtained, prevented unambiguous correlations of the advances with the late Pleistocene cold periods. During the latter advances, small glaciers and rock glaciers developed close to the cirque headwalls, and co-occurred under the same climatic conditions. No evidence for Holocene re-advance was found for any of the three tributary valleys.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P.W., Varder, M., and Schlüchter, C. (2007). Paleoglacial records from Kavron Valley, NE Turkey: field and cosmogenic exposure dating evidence. Quaternary International 164–165, 170183.Google Scholar
Akçar, N., Yavuz, V., Ivy-Ochs, S., Reber, R., Kubik, P.W., Zahno, C., and Schlüchter, C. (2014). Glacier response to the change in atmospheric circulation in the eastern Mediterranean during the Last Glacial Maximum. Quaternary Geochronology 19, 1741.CrossRefGoogle Scholar
Bakalowicz, M., Sarriaux, P., and Ford, D.C. (1984). Quaternary glacial events in the Pyrenees from U-series dating of speleothems in the Niaux–Lombrives–Sabart caves, Ariège, France. Norsk Geografisk Tidsskrift 38, 193197.CrossRefGoogle Scholar
Ballantyne, C.K. (2010). Extent and deglacial chronology of the last British-Irish Ice Sheet: implications for exposure dating using cosmogenic isotopes. Journal of Quaternary Science 25, 515534.Google Scholar
Ballantyne, C.K., Rinterknecht, V., and Gheorghiu, D.M. (2013). Deglaciation chronology of the Galloway Hills Ice Centre, southwest Scotland. Journal of Quaternary Science 28, 412420.CrossRefGoogle Scholar
Barrère, P. (1966). La morphologie quaternaire de la region de Biescas et de Sabiñánigo (Haut Aragón). Bulletin de l'Association Franç;aise pour l'étude du Quaternaire 2, 8393.CrossRefGoogle Scholar
Benson, L., Madole, R., Phillips, W., Landis, G., Thomas, T., and Kubik, P. (2004). The probable importance of snow and sediment shielding on cosmogenic ages of north-central Colorado Pinedale and pre-Pinedale moraines. Quaternary Science Reviews 23, 193206.CrossRefGoogle Scholar
Böhlert, R., Egli, M., Maisch, M., Brandová, D., Ivy-Ochs, S., Kubik, P.W., and Haeberli, W. (2011). Application of a combination of dating techniques to reconstruct the Lateglacial and Early Holocene landscape history of the Albula region (eastern Switzerland). Geomorphology 127, 113.Google Scholar
Bowen, D.Q., Phillips, F.M., McCabe, A.M., Knutz, P.C., and Sykes, G.A. (2002). New data for the Last Glacial Maximum in Great Britain and Ireland. Quaternary Science Reviews 21, 89101.Google Scholar
Brugger, K.A. (2007). Cosmogenic 10Be and 36Cl ages from Late Pleistocene terminal moraine complexes in the Taylor River drainage basin, central Colorado, USA. Quaternary Science Reviews 26, 494499.CrossRefGoogle Scholar
Calle, M., Sancho, C., Peña, J.L., Cunha, P., Oliva-Urcia, B., and Pueyo, E. (2013). La secuencia de terrazas cuaternarias del río Alcanadre (provincial de Huesca): caracterización y consideraciones paleoambientales. Cuadernos de Investigación Geográfica 39, 1 159178.Google Scholar
Calvet, M., Delmas, M., Gunnell, Y., Braucher, R., and Bourlès, D. (2011). Recent advances in research on Quaternary glaciations in the Pyrenees. Ehlers, J., Gibbart, P.L., Hughes, P. Quaternary glaciations, extent and chronology Elsevier, Amsterdam.127139.CrossRefGoogle Scholar
Chueca, J., Peña Monné, J.L., Lampre, F., García-Ruiz, J.M., and Martí-Bono, C. (1998). Los glaciares del Pirineo aragonés: Estudio de su evolución y extension actual. Departamento de Geografía Universidad de Zaragoza, Zaragoza.(104 pp.).Google Scholar
Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E., Cheng, H., Kaufman, D.S., Liu, Z., Marchitto, T.M., Mix, A.C., Morrill, C., Otto-Bliesner, B.L., Pahnke, K., Russell, J.M., Whitlock, C., Adkins, J.F., Blois, J.L., Clark, J., Colman, S.M., Curry, W.B., Flower, B.P., He, F., Johnson, T.C., Lynch-Stieglitz, J., Markgraf, V., McManus, J., Mitrovica, J.X., Moreno, P.I., and Williams, J.W. (2012a). Global climate evolution during the last deglaciation. PNAS 109, 19 E1134E1142.Google Scholar
Clark, C.D., Hughes, A.L.C., Greenwood, S.L., Jordan, C., and Sejrup, H.P. (2012b). Pattern and timing of retreat of the last British-Irish Ice Sheet. Quaternary Science Reviews 44, 112146.Google Scholar
Combourieu-Nebout, N., Peyron, O., Desprat, S., Beaudouin, C., Kotthoff, U., and Marret, F. (2009). Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data. Climate of the Past 5, 503521.Google Scholar
Cowton, T., Hughes, P.D., and Gibbard, P.L. (2009). Palaeoglaciation of Parque Natural Lago de Sanabria, Northwest Iberia. Geomorphology 108, 282291.CrossRefGoogle Scholar
(2014). CRONUS-Earth Project http://web1.ittc.ku.edu:8888/html/latest/topo/(accessed in August 2014).Google Scholar
Darnault, R., Rolland, Y., Braucher, R., Bourlès, D., Revel, M., Sánchez, G., and Bouissou, S. (2012). Timing of the last deglaciation revealed by receding glaciers in the Alpine-scale: impact on mountain geomorphology. Quaternary Science Reviews 31, 12 127142.Google Scholar
de la Riva, J. (2000). Caracterización climática del alto valle de Tena. Boletín Glaciológico Aragonés 1, 81109.Google Scholar
Delmas, M. (2005). La déglaciation dans le massif du Carlit (Pyrénées orientales): approaches géomorphologique et géochronologique nouvelles. Quaternaire 16, 4555.CrossRefGoogle Scholar
Delmas, M. . (2009). Chronologie et impact géomorphologique des glaciations quaternaires dans l'est des Pyrénées. Thèse Doctorat Université de Paris I (unpublished), 523 pp.Google Scholar
Delmas, M., Gunnell, Y., Braucher, R., Calvet, M., and Bourlès, D. (2008). Exposure age chronology of the last glaciation in the eastern Pyrenees. Quaternary Research 69, 231241.Google Scholar
Delmas, M., Calvet, M., Gunnell, Y., Braucher, R., and Bourlès, D. (2011). Palaeogeography and 10Be exposure-age chronology of Middle and Late Pleistocene glacier systems in the northern Pyrenees: implications for reconstructing regional palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 109122.Google Scholar
Delmas, M., Calvet, M., Gunnell, Y., Braucher, R., and Bourlès, D. (2012). Les glaciations quaternaires dans les Pyrénées ariégeoises: approche historiographique, données paleogéographiques et chronologies nouvelles. Quaternaire 23, 6185.Google Scholar
Denton, G.H., Broecker, W.S., and Alley, R.B. (2006). The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14, 20 1416.CrossRefGoogle Scholar
Desilets, D., Zreda, M., Almasi, P.F., and Elmore, D. (2006). Determination of cosmogenic Cl-36 in rocks by isotope dilution: innovations, validation and error propagation. Chemical Geology 233, 185195.Google Scholar
Dielforder, A., and Hetzel, R. (2014). The deglaciation history of the Simplon region (southern Swiss Alps) constrained by 10Be exposure dating of ice-molded bedrock surfaces. Quaternary Science Reviews 84, 2638.Google Scholar
Dormoy, I., Peyron, O., Combourieu Nebot, N., Goring, S., Kotthoff, U., Magny, M., and Pross, J. (2009). Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records. Climate of the Past 5, 615632.Google Scholar
Federici, P.R., Granger, D.E., Riobolini, A., Spagnolo, M., Pappalardo, M., and Cyr, A.J. (2012). Last glacial maximum and the Gschnitz stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas 41, 277291.CrossRefGoogle Scholar
Fernández-Mosquera, D., Marti, K., Vidal-Romaní, J.R., and Weigel, A. (2000). Late Pleistocene deglaciation chronology in the NW of the Iberian Peninsula using cosmicray produced 21 Ne in quartz. Nuclear Instruments and Methods in Physics Research B172, 832837.CrossRefGoogle Scholar
Fink, D., Vogt, S., and Hotchkis, M. (2000). Cross-sections for 36Cl from Ti at Ep = 35–150 MeV: applications to in-situ exposure dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172, 861866.CrossRefGoogle Scholar
Fletcher, W.J., Sánchez Goñi, M.F., Peyron, O., and Dormoy, I. (2010). Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Climate of the Past 6, 245264.CrossRefGoogle Scholar
Frochoso, M., González-Pellejero, R., and Allende, F. (2013). Pleistocene glacial morphology and timing of Last Glacial Cycle in Cantabrian Mountains (Northern Spain): new chronological data from the Asón area. Central European Journal of Geosciences 5, 1227.Google Scholar
García-Ruiz, J.M., and Martí-Bono, C. (2002). Mapa geomorfológico del Parque Nacional de Ordesa y Monte Perdido. Ministerio de Medio Ambiente, Madrid.(106 pp.).Google Scholar
García-Ruiz, J.M., and Martí-Bono, C. (2011). Los depósitos glaciares del valle del Aragón Subordán, Pirineo Centro-occidental español. Cuaternario y Geomorfología 25, 5781.Google Scholar
García-Ruiz, J.M., Gómez-Villar, A., Ortigosa, L., and Martí-Bono, C. (2000). Morphometry of glacial cirques in the Central Spanish Pyrenees. Geografiska Annaler 82A, 433442.Google Scholar
García-Ruiz, J.M., Valero-Garcés, B., González-Sampériz, P., Lorente, A., Martí-Bono, C., Beguería, S., and Edwards, L. (2001). Stratified scree in the Central Spanish Pyrenees: palaeoenvironmental implications. Permafrost and Periglacial Processes 12, 233242.Google Scholar
García-Ruiz, J.M., Valero-Garcés, B.L., Martí-Bono, C., and González-Sampériz, P. (2003). Asynchroneity of maximum glacier advances in the central Spanish Pyrenees. Journal of Quaternary Science 18, 6172.CrossRefGoogle Scholar
García-Ruiz, J.M., Peña-Monné, J.L., Martí-Bono, C., Gómez-Villar, A., Constante Orrios, A., and Espinalt-Brillas, M. (2011). El relieve del Alto Aragón occidental. Cartografía y síntesis geomorfológica. Publicaciones del Consejo de Protección de la Naturaleza de Aragón, Zaragoza (91 pp.).Google Scholar
García-Ruiz, J.M., Martí-Bono, C., Peña-Monné, J.L., Sancho, C., Rhodes, E.J., Valeero-Garcés, B., González-Sampériz, P., and Moreno, A. (2013). Glacial and fluvial deposits in the Aragón Valley, central-western Pyrenees: chronology of the Pyrenean Late Pleistocene glaciers. Geografiska Annaler, Series A, Physical Geography 95, 1532.CrossRefGoogle Scholar
Geirsdóttir, Á., Miller, G.H., Axford, Y., and Olafsdottir, S. (2009). Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quaternary Science Reviews 28, 21072118.Google Scholar
Giraudi, C. (2012). The Campo Felice Late Pleistocene glaciation (Apennines, Central Italy). Journal of Quaternary Science 27, 4 432440.CrossRefGoogle Scholar
Gómez-Ortiz, A., Palacios, D., Palade, B., Vázquez-Selem, L., and Salvador_Franch, F. (2012). The deglaciation of Sierra Nevada (Southern Spain). Geomorphology 159–160, 93105.Google Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T., and Dedoubat, J.J. (2006). Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research 66, 3852.CrossRefGoogle Scholar
González-Sampériz, P., García-Prieto, E., Aranbarri, J., Valero-Garcés, B.L., Moreno, A., Gil-Romera, G., Sevilla-Callejo, M., Santos, L., Morellón, M., Mata, P., Andrade, A., and Carrión, J.S. (2013). Reconstrucción paleoambiental del último ciclo glacial–interglacial en la Iberia continental: la secuencia del Cañizar de Villarquemado (Teruel). Cuadernos de Investigación Geogrífica 39, 1 4976.Google Scholar
Gosse, J.C., and Phillips, F.M. (2001). Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 14751560.Google Scholar
Guerrero, J., Gutiérrez, F., Carbonel, D., Bonachea, J., García-Ruiz, J.M., Galve, J.P., and Lucha, P. (2013). 1:5000 landslide map of the upper Gállego Valley (central Spanish Pyrenees). Journal of Maps 8, 484491.CrossRefGoogle Scholar
Hippe, K., Ivy-Ochs, S., Kober, F., Zasadni, J., Wieler, R., Wacker, L., Kubik, P.W., and Schlüchter, C. (2014). Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic 10Be and in situ 14C. Quaternary Geochronology 19, 1426.CrossRefGoogle Scholar
Houmark-Nielsen, M., Linge, H., Fabel, D., Schnabel, C., Xu, S., Wilcken, K.M., and Binnie, S. (2012). Cosmogenic surface exposure dating the last glaciation in Denmark: discrepancies with independent age constraints suggests delayed periglacial landform stabilization. Quaternary Geochronology 13, 117.CrossRefGoogle Scholar
Hughes, P.D., and Woodward, J.C. (2008). Timing of glaciation in the Mediterranean mountains during the last cold stage. Journal of Quaternary Science 23, 575588.Google Scholar
Hughes, P.D., Woodward, J.C., and Gibbard, P.L. (2006). Glacial history of the Mediterranean mountains. Progress in Physical Geography 30, 334364.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., Van Calteren, P.C., Thomas, L.E., and Adamson, K.R. (2010). Pleistocene ice caps in the coastal mountains of the Adriatic Sea. Quaternary Science Reviews 29, 36903708.CrossRefGoogle Scholar
Hughes, P.D., Fenton, C.R., and Gibbard, P.L. (2011). Quaternary glaciations of the Atlas Mountains, North Africa. Ehlers, J., Gibbard, P.L., Hughes, P.D. Quaternary glaciations–Extent and chronology: A closer look Developments in Quaternary Science. 15, Elsevier, Amsterdam.10651074.Google Scholar
Ivy-Ochs, S., Schäffer, J., Kubik, P.W., Synal, H.N., and Schlüchter, C. (2004a). Timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae 97, 4755.CrossRefGoogle Scholar
Ivy-Ochs, S., Synal, H.A., Roth, C., and Schaller, M. (2004b). Initial results from isotope dilution for Cl and Cl-36 measurements at the PSI/ETH Zurich AMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224, 623627.Google Scholar
Ivy-Ochs, S., Kerschner, H., Kubik, P., and Schlüchter, C. (2006). Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. Journal of Quaternary Science 21, 115130.Google Scholar
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Masich, M., Kubik, P.W., and Schlüchter, C. (2008). Chronology of the last glacial cycle in the European Alps. Journal of Quaternary Science 23, 559573.Google Scholar
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., and Kubik, P.W. (2009). Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews 28, 21372149.Google Scholar
Jalut, G., Montserrat, J., Fontugne, M., Delibrias, G., Vilaplana, J.M., and Juliá, R. (1992). Glacial to interglacial vegetation changes in the northern and southern Pyrenees: deglaciation, vegetation cover and chronology. Quaternary Science Reviews 11, 449480.CrossRefGoogle Scholar
Jiménez-Sánchez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, P., Valero-Garcés, B., Moreno, A., Rico, M., and Valcércel, M. (2013). A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last glacial cycle. Geomorphology 196, 5064.Google Scholar
Julián, A., Chueca, J., and Peña, J.L. (2000). El relieve del Alto Gállego (Pirineo aragonés). Boletín Glaciológico Aragonés 1, 4579.Google Scholar
Kerschner, H., and Ivy-Ochs, S. (2008). Paleoclimate from glaciers: examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change 60, 5871.Google Scholar
Kuhlemann, J., Gachev, E., Gikov, A., Nedkov, S., Krumrei, I., and Kubik, P. (2013). Glaciation in the Rila Mountains (Bulgaria) during the Last Glacial Maximum. Quaternary International 293, 5162.Google Scholar
Lasberg, K., and Kalm, V. (2013). Chronology of Late Weichselian glaciation in the western part of the East European Plain. Boreas 42, 9951007.Google Scholar
Lenton, T.M. (2011). Early warning of climate tipping points. Nature Climate Change 1, 201209. 10.1038/NCLIMATE1143.CrossRefGoogle Scholar
Lewis, C.J., McDonald, E.V., Sancho, C., Peña, J.L., and Rhodes, E.J. (2009). Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67, 141152.Google Scholar
López-Moreno, J.I. (2000). Los glaciares del alto valle del Gállego (Pirineo Central) desde la Pequeña Edad del Hielo. Implicaciones en la evolución de la temperatura. Geoforma Ediciones, Logroño (77 pp.).Google Scholar
López-Moreno, J.I. (2005). Recent variations of snowpack depth in the Central Spanish Pyrenees. Arctic, Antarctic and Alpine Research 37, 253260.CrossRefGoogle Scholar
Lopez-Moreno, J.I., Goyette, S., and Beniston, M. (2009). Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. Journal of Hydrology 374, 3–4 384396.Google Scholar
López-Moreno, J.I., Latron, J., and Lehmann, A. (2010). Effects of simple and grid size on the accuracy and stability of regression-bases snow interpolation methods. Hydrological Processes 24, 19141928.CrossRefGoogle Scholar
López-Moreno, J.I., Pomeroy, J., Revuelto, J., and Vicente-Serrano, S.M. (2013). Response of snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees. Hydrological Processes 27, 26372650.Google Scholar
Makos, M., Nitychoruk, J., and Zreda, M. (2013). Deglaciation chronology and paleoclimate of the Pieciu Stawów Polskich/Rotzoki Valley, high Tatra Mountains, Western Carpathians, since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier-climate modelling. Quaternary International 293, 6378.Google Scholar
Martínez de Pisón, E., and Serrano, E. (1998). Morfología glaciar del valle de Tenaq (Pirineo aragonés). Gómez-Ortiz, A., Pérez-Alberti, A. Las huellas glaciares de las montañas españolas Universidade de Santiago de Compostela, Santiago de Compostela.239261.Google Scholar
Mix, A.C., Bard, E., and Schneider, R. (2001). Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.Google Scholar
Morellón, M., Valero-Garcés, B., Vegas-Villarrúbia, T., González-Sampériz, P., Romero, O., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M., and Corella, J.P. (2009). Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quaternary Science Reviews 28, 25822599.CrossRefGoogle Scholar
Moreno, A., Stoll, H.S., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., and Edwards, R.L. (2010a). A speleothem record of glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change 71, 218231.CrossRefGoogle Scholar
Moreno, A., Valero-Garcés, B.L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Mata, M.P., Navas, A., González-Sampériz, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P., and Rico, M. (2010b). The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, northern Spain). Journal of Quaternary Science 25, 10761091.Google Scholar
Moreno, A., González Sampériz, P., Morellón, M., Valero-Garcés, B.L., and Fletcher, W.J. (2012). Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quaternary Science Reviews 36, 139153.CrossRefGoogle Scholar
Oliva-Urcia, B., Moreno, A., Valero-Garcés, B., Mata, P., Grupo HORDA, (2013). Magnetismo y cambios ambientales en registros terrestres: el lago de Marboré, Parque Nacional de Ordesa y Monte Perdido (Huesca). Cuadernos de Investigación Geográfica 39, 1 117140.Google Scholar
Palacios, D., de Marcos, J., and Vázquez-Selem, L. (2011). Last glacial maximum and deglaciation of Sierra de Gredos, central Iberian Peninsula. Quaternary International 233, 1626.CrossRefGoogle Scholar
Palacios, D., de Andrés, N., de Marcos, J., and Vázquez-Selem, L. (2012a). Glacial landforms and their paleoclimatic significance in the Sierra de Guadarrama, Central Iberian Peninsula. Geomorphology 139, 6778.Google Scholar
Palacios, D., Andrés, N., Marcos, J., and Vázquez-Selem, L. (2012b). Maximum glacial advance and deglaciation of the Pinar Valley (Sierra de Gredos, Central Spain) and its significance in the Mediterranean context. Geomorphology 177–178, 5161.CrossRefGoogle Scholar
Palade, B., Palacios Estremera, D., and Gómez Ortiz, A. (2011). Los glaciares rocosos de Sierra Nevada y su significado paleoclimático. Una primera aproximación. Cuadernos de Investigación Geográfica 37, 2 95118.CrossRefGoogle Scholar
Pallàs, R., Rodés, Á., Braucher, R., Carcailler, J., Ortuño, M., Bordonau, J., Bourlès, D., Vilaplana, J.M., Masana, E., and Santanach, P. (2006). Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quaternary Science Reviews 25, 29372963.Google Scholar
Pallàs, R., Rodés, Á., Braucher, R., Bourlès, D., Delmas, M., Calvet, M., and Gunnell, Y. (2010). Small isolated glacial catchments as priority targets for cosmogenic surface exposure dating of Pleistocene climate fluctuations, southeastern Pyrenees. Geology 38, 891894.Google Scholar
Pellitero, R., Serrano, E., and González-Trueba, J.J. (2011). Glaciares rocosos del sector central de la Montaña Cantábrica: indicadores paleoambientales. Cuadernos de Investigación Geográfica 37, 2 119144.CrossRefGoogle Scholar
Peltier, W.R., and Fairbanks, R.G. (2006). Global ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.Google Scholar
Peña, J.L., Sancho, C., Lewis, C., McDonald, E., and Rhodes, E. (2003). Las morrenas terninales de los valles glaciares del Gállego y Cinca (Pirineo de Huesca). Datos cronológicos. Boletín Glaciológico Aragonés 4, 91109.Google Scholar
Phillips, F.M., Zreda, M.G., Gosse, J.C., Klein, J., Evenson, E.B., Hall, R.D., Chadwick, O.A., and Sharma, P. (1997). Cosmogenic 36Cl and 10Be ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming. Geological Survey of America Bulletin 109, 14531463.2.3.CO;2>CrossRefGoogle Scholar
Phillips, F.M., Stone, W.D., and Fabryka-Martin, J.T. (2001). An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175, 689701.Google Scholar
Phillips, F.M. (2003). Cosmogenic 36Cl ages of Quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53, 199208.Google Scholar
Putkonen, J., and O'Neal, M. (2006). Degraded unconsolidated Quaternary landforms in the western North America. Geomorphology 75, 408419.Google Scholar
Quinif, Y., and Maire, R. (1998). Pleistocene deposits in Pierre Saint-Martin Cave, French Pyrenees. Quaternary Research 49, 3750.Google Scholar
Ravazzi, C., Badino, F., Marsetti, D., Patera, G., and Reimer, P.J. (2012). Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quaternary Science Reviews 58, 146161.CrossRefGoogle Scholar
Rinterknecht, V., Braucher, R., Böse, M., Bourlès, D., and Mercier, J.-L. (2012). Late Quaternary ice sheet extents in northeastern Germany inferred from surface exposure dating. Quaternary Science Reviews 44, 8995.Google Scholar
Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rico, M.T., and Valero-Garcés, B. (2011). Last deglaciation in NW Spain: new chronological and geomorphic evidence from the Sanabria region. Geomorphology 135, 4865.Google Scholar
Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rinterknecht, V., Pallàs, R., Bourlès, D., and Valero-Garcés, B. (2014). A multiple dating-method approach applied to the Sanabria Lake moraine complex (NW Iberian Peninsula, SW Europe). Quaternary Science Reviews 83, 110.Google Scholar
Sarikaya, M.A., Zreda, M., Çiner, A., and Zweck, Ch. (2008). Cold and wet Last Glacial Maximum on Mount Sandiras, SW Turkey, inferred from cosmogenic dating and glacier modelling. Quaternary Science Reviews 27, 7–8 769789.Google Scholar
Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature 413, 591596.CrossRefGoogle ScholarPubMed
Schildgen, T.F., Phillips, W.M., and Purves, R.S. (2005). Simulation of snow shielding corrections fort cosmogenic nuclide surface exposure studies. Geomorphology 64, 6785.Google Scholar
Schimmelpfennig, I. (2009). Cosmogenic 36Cl in Ca and K Rich Minerals: Analytical Developments, Production Rate Calibrations and Cross Calibration with 3He and 21Ne. (PhD Thesis)Universite Paul Cezanne Aix-Marseille III, CEREGE, Aix en Provence, France.Google Scholar
Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P.H., Bourle, D., Burnard, P., and Williams, A. (2009). Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quaternary Geochronology 4, 441461.Google Scholar
Schimmelpfennig, I., Schaefer, J.M., Putnam, A.E., Koffman, T., Benedetti, L., Ivy-Ochs, S., Aster Team, , and Schulüchter, Ch. (2014). 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). Journal of Quaternary Science 29, 407413.Google Scholar
Scourse, J.D., Haapaniemi, A.I., Colmenero-Hidalgo, E., Peck, V.L., Hall, I.R., Austin, W.E.N., Knutz, P.C., and Zahn, R. (2009). Growth, dynamics and deglaciation of the last British-Irish ice sheet: the deep-sea ice rafted detritus record. Quaternary Science Reviews 28, 30663084.Google Scholar
Serrano, E., González-Trueba, J.J., Pellitero, R., González-García, M., and Gómez-Lende, M. (2013). Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain). Geomorphology 196, 6582.CrossRefGoogle Scholar
Serrano-Cañadas, E. (1991). Glacial evolution of the Upper Gállego Valley (Panticosa mountains and Riberda de Biescas, Aragonese Pyrenees, Spain). Pirineos 138, 83104.Google Scholar
Serrano-Cañadas, E. (1995). Geomorfología de la Sierra de Tendeñera (Pirineo aragonés). Ería 37, 143158.Google Scholar
Serrano-Cañadas, E. (1998). Geomorfología del Alto Gállego (Pirineo aragonés). Institución Fernando El Católico, Zaragoza.(501 pp.).Google Scholar
Stone, J.O. (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, B10 2375323759.Google Scholar
Stone, J.O., Allan, G.L., Fifield, L.K., and Cresswell, R.G. (1996). Cosmogenic 36Cl from calcium spallation. Geochimica et Cosmochimica Acta 60, 4 679692.CrossRefGoogle Scholar
Stone, J.O., Fifield, K., and Vasconcelos, P. (2005). Terrestrial chlorine-36 production from spallation of iron. Abstract of 10th International Conference on Accelerator Mass Spectrometry. September 5–10, 2005, Berkeley, USA (http://llnl.confex.com/llnl/ams10/techprogram/P1397.HTM).Google Scholar
Stroeven, A.P., Fabel, D., Harbor, J.M., Fink, D., Coffee, M.W., and Dahlgren, T. (2011). Importance of sampling across an assemblage of glacial landforms for interpreting cosmogenic ages of deglaciation. Quaternary Research 76, 148156.Google Scholar
Vermeesch, P. (2007). CosmoCalc: an excel add-in for cosmogenic nuclide calculations. Geochemistry, Geophysics, Geosystems 8, 15252027.Google Scholar
Williams, C., Flower, B.P., and Hastings, D.W. (2012). Seasonal Laurentide Ice Sheet melting during the “Mystery Interval” (15.5–14.5 ka). Geology 40, 955958.Google Scholar
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fifield, L.K. (2000). Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713716.CrossRefGoogle ScholarPubMed
Zahno, C., Akçar, N., Yavuz, V., Kunik, P.W., and Schlüchter, C. (2009). Surface exposure dating of Late Pleistocene glaciations at the Dedegöl Mountains (Lake Beysehir, SW Turkey). Journal of Quaternary Science 24, 10161028.Google Scholar
Zahno, C., Akçar, N., Yavuz, V., Kubik, P.W., and Schluchter, C. (2010). Chronology of Late Pleistocene glacier variations at the Udula? Mountain, NW Turkey. Quaternary Science Reviews 29, 11731187.CrossRefGoogle Scholar
Zreda, M., Enbgland, J., Phillips, F., Elmore, D., and Sharma, P. (1999). Unblocking of the Nares Strait by Greenland and Ellesmere ice-sheet retrest 10,000 years ago. Nature 398, 128142.CrossRefGoogle Scholar
Supplementary material: File

Palacios et al. supplementary material

Figures S1-S4

Download Palacios et al. supplementary material(File)
File 4.4 MB