Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T06:01:36.888Z Has data issue: false hasContentIssue false

Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin

Published online by Cambridge University Press:  20 January 2017

Zhifei Liu*
Affiliation:
Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Christophe Colin
Affiliation:
Laboratoire Orsayterre, FRE 2566, BAT. 504, Université de Paris XI, 91 405 Orsay, France
Alain Trentesaux
Affiliation:
PBDS Laboratory, UMR 8110 CNRS, University of Lille 1, 59 655 Villeneuve d'Ascq, France
Giuseppe Siani
Affiliation:
Laboratoire Orsayterre, FRE 2566, BAT. 504, Université de Paris XI, 91 405 Orsay, France
Norbert Frank
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Laboratoire mixte CNRS-CEA, Avenue de la Terrasse, 91 198 Gif-sur-Yvette Cedex, France
Dominique Blamart
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Laboratoire mixte CNRS-CEA, Avenue de la Terrasse, 91 198 Gif-sur-Yvette Cedex, France
Segueni Farid
Affiliation:
Laboratoire Orsayterre, FRE 2566, BAT. 504, Université de Paris XI, 91 405 Orsay, France
*
Corresponding author. Fax: +86 21 6598 8808.E-mail address:lzhifei@online.sh.cn (Z. Liu).

Abstract

High-resolution siliciclastic grain size and bulk mineralogy combined with clay mineralogy, rubidium, strontium, and neodymium isotopes of Core MD01-2393 collected off the Mekong River estuary in the southwestern South China Sea reveals a monsoon-controlled chemical weathering and physical erosion history during the last 190,000 yr in the eastern Tibetan Plateau and the Mekong Basin. The ranges of isotopic composition are limited throughout sedimentary records: 87Sr/86Sr = 0.7206–0.7240 and ε Nd(0) = −11.1 to −12.1. These values match well to those of Mekong River sediments and they are considered to reflect this source region. Smectites/(illite + chlorite) and smectites/kaolinite ratios are used as indices of chemical weathering rates, whereas the bulk kaolinite/quartz ratio is used as an index of physical erosion rates in the eastern Tibetan Plateau and the Mekong Basin. Furthermore, the 2.5–6.5 μm/15–55 μm siliciclastic grain size population ratio represents the intensity of sediment discharge of the Mekong River and in turn, the East Asian summer monsoon intensity. Strengthened chemical weathering corresponds to increased sediment discharge and weakened physical erosion during interglacial periods. In contrast, weakened chemical weathering associated with reduced sediment discharge and intensified physical erosion during glacial periods. Such strong glacial–interglacial correlations between chemical weathering/erosion and sediment discharge imply the monsoon-controlled weathering and erosion.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C., (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 6266.Google Scholar
Bassinot, F., Baltzer, A., (2002). Les Rapports des Campagnes " la Mer WEPAMA Cruise MD 122/IMAGES VII on Board RV “Marion Dufresne” (2001).Institut Polaire Français-Paul Emile Victor (IPEV), Plouzané(p. 453).Google Scholar
Boulay, S., Colin, C., Trentesaux, A., Pluquet, F., Bertaux, J., Blamart, D., Buehring, C., Wang, P., (2003). Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144). Prell, W.L., Wang, P., Blum, P., Rea, D.K., Clemens, S.C., Proceedings of Ocean Drilling Program Scientific Results vol. 184, 121.[Online]. Available:http://www-odp.tamu.edu/publications/184_SR/ [Cited 30-04-2003].Google Scholar
Bouquillon, A., France-Lanord, C., Michard, A., Tiercelin, J.J., (1990). Sedimentology and isotopic chemistry of the Bengal Fan sediments: the denudation of the Himalaya. Cochran, J.R., Curray, J.R., Sager, W.W., Stow, D.A.V., Proceedings of Ocean Drilling Program Scientific Results vol. 116, 4358.Google Scholar
Colin, C., Turpin, L., Bertaux, J., Desprairies, A., Kissel, C., (1999). Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles. Earth and Planetary Science Letters 171, 647660.Google Scholar
Colin, C., Bertaux, J., Turpin, L., Kissel, C., (2001). Dynamique de l'érosion dans le bassin versant de l'Irrawaddy au cours des deux derniers cycles climatiques (280–0 ka). Comptes Rendus de l'Académie des Sciences Paris 332, 483489.Google Scholar
(1975). Commission for the Geological Map of the World, 1975.Geological World Atlas, scale 1:10,000,000,UNESCO, Paris., .Google Scholar
Curray, J.R., (1994). Sediment volume and mass beneath the Bay of Bengal. Earth and Planetary Science Letters 125, 371383.Google Scholar
Derry, L.A., France-Lanord, C., (1996). Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth and Planetary Science Letters 142, 5974.Google Scholar
Derry, L.A., France-Lanord, C., (1997). Himalayan weathering and erosion fluxes: climate and tectonic controls. Ruddiman, W.F., Tectonic Uplift and Climate Change Plenum Press, New York., 289312.Google Scholar
Gingele, F.X., Deckker, P.D., Hillenbrand, C.-D., (2001). Clay mineral distribution in surface sediments between Indonesia and NW Australia—Source and transport by ocean currents. Marine Geology 179, 135146.Google Scholar
Gupta, A., Hock, L., Huang, X., Chen, P., (2002). Evaluation of part of the Mekong River using satellite imagery. Geomorphology 44, 221239.Google Scholar
Jacobsen, S.B., Wasserburg, G.J., (1980). Sm–Nd isotopic evolution of chondrites. Earth and Planetary Science Letters 50, 139155.Google Scholar
Jahn, B.-m., Gallet, S., Han, J., (2001). Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology 178, 7194.Google Scholar
Kutzbach, J.E., Prell, W.L., Ruddiman, W.F., (1993). Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. Journal of Geology 101, 177190.Google Scholar
Lee, M.-Y., Wei, K.-Y., Chen, Y.-G., (1999). High resolution oxygen isotope stratigraphy for the last 150,000 years in the southern South China Sea: core MD972151. Tao 10, 239254.CrossRefGoogle Scholar
Liu, Z., Trentesaux, A., Clemens, S.C., Colin, C., Wang, P., Huang, B., Boulay, S., (2003a). Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology 201, 133146.Google Scholar
Liu, Z., Wang, C., Trentesaux, A., Zhao, X., Yi, H., Hu, X., Jin, W., (2003b). Paleoclimate changes during early Oligocene in the Hoh Xil region, northern Tibetan Plateau. Acta Geologica Sinica 77, 504513.Google Scholar
Liu, Z., Colin, C., Trentesaux, A., Blamart, D., Bassinot, F., Siani, G., Sicre, M.-A., (2004). Erosional history of the eastern Tibetan Plateau over the past 190 kyr: clay mineralogical and geochemical investigations from the southwestern South China Sea. Marine Geology 209, 118.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 3000,000-year chronostratigraphy. Quaternary Research 27, 129.Google Scholar
Molnar, P., England, P., (1990). Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature 346, 2934.CrossRefGoogle Scholar
Ninkovich, D., Shackleton, N.J., Abdel-Monem, A.A., Obradovich, J.D., Izett, G., (1978). K–Ar age of the late Pleistocene eruption of Toba, north Sumatra. Nature 276, 574577.Google Scholar
Pichard, C., Fröhlich, F., (1986). Analyses IR quantitatives des sédiments: exemple du dosage du quartz et de la calcite. Revue de l'Institut Français du Pétrole 41, 809819.Google Scholar
Raymo, M., Ruddiman, W.F., Froehlich, P.N., (1988). Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649653.2.3.CO;2>CrossRefGoogle Scholar
Schäfer, J.M., Tschudi, S., Zhao, Z., Wu, X., Ivy-Ochs, S., Wieler, R., Baur, H., Kubik, P.W., Schlüchter, C., (2002). The limited influence of glaciations in Tibet on global climate over the past 170 000 yr. Earth and Planetary Science Letters 194, 287297.Google Scholar
P., Ségalen, (1995). Les Sols Ferrallitiques Et Leur Répartition Géographique. Tome 3, Ѐditions de l'Orstom,Collection des Etudes et Thèses, , Paris., 201.Google Scholar
Shipboard Scientific Party, (2000). Leg 184 summary: exploring the Asian monsoon through drilling in the South China Sea. Wang, P., Prell, W.L., Blum, P., Proceedings of Initial Reports vol. 184, Ocean Drilling Program, College Station, TX., 177.Google Scholar
Ta, T.K.O., Nguyen, V.L., Tateishi, M., Kobayashi, I., Tanabe, S., Saito, Y., (2002). Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quaternary Science Reviews 21, 18071819.Google Scholar
Tamburini, F., Adatte, T., Föllmi, K., Bernasconi, S.M., Steinmann, P., (2003). Investigating the history of East Asian monsoon and climate during the last glacial interglacial period (0–140,000 years): mineralogy and geochemistry of ODP sites 1143 and 1144, South China Sea. Marine Geology 201, 147168.Google Scholar
Thiry, M., (2000). Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews 49, 201221.Google Scholar
Thompson, P.R., , A.W.H., Duplessy, J.C., Shackleton, N.J., (1979). Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr B.P. in the Indian and Pacific Oceans. Nature 280, 554558.CrossRefGoogle Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U., (1999). East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology 156, 245284.Google Scholar
Wehausen, R., Brumsack, H.-J., (2002). Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth and Planetary Science Letters 201, 621636.CrossRefGoogle Scholar
Wehausen, R., Tian, J., Brumsack, H.-J., Cheng, X., Wang, P., (2003). Geochemistry of Pliocene sediments from ODP Site 1143 (southern South China Sea). Prell, W.L., Wang, P., Blum, P., Rea, D.K., Clemens, S.C., Proceedings of Ocean Drilling Program Scientific Results vol. 184, 121.[Online]. Available: http://www-odp.tamu.edu/publications/184_SR/ [Cited 30-04-2003].Google Scholar
Wei, G., Gui, X., Li, X., Chen, Y., Yu, J., (2000). Strontium and neodymium isotopic compositions of detrital sediment of NS90-103 from South China Sea: variations and their paleoclimate implication. Science in China, Series D 43, 596604.Google Scholar
Whitford, D.J., (1975). Strontium isotopic studies of the volcanic rocks of the Saunda arc, Indonesia, and their petrogenetic implications. Geochimica et Cosmochimica Acta 39, 12871302.CrossRefGoogle Scholar