Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:47:56.341Z Has data issue: false hasContentIssue false

Late Quaternary Vegetation Dynamics in the Southern Amazon Basin Inferred from Carbon Isotopes in Soil Organic Matter

Published online by Cambridge University Press:  20 January 2017

Hermes Augusto de Freitas
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), Box 96, 13406-000, Piracicaba/SP, Brazil, E-mail: hfreitas@cena.usp.br
Luiz Carlos Ruiz Pessenda
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), Box 96, Piracicaba/SP, 13406-000, Brazil
Ramon Aravena
Affiliation:
Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
Susy Ely Marques Gouveia
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), Box 96, Piracicaba/SP, 13406-000, Brazil
Adauto de Souza Ribeiro
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), Box 96, Piracicaba/SP, 13406-000, Brazil
René Boulet
Affiliation:
IRD, Instituto de Geociências/Universidade de São Paulo, 05508-900, São Paulo/SP, Brazil

Abstract

Carbon isotopes of soil organic matter (SOM) were used to evaluate and establish the chronology of the vegetation dynamics of an ecosystem presently composed of savannas surrounded by forests. The study was carried out on a 200-km transect along highway BR 319, on the border of Amazonas and Rondônia states, in southern Amazon, Brazil. Large ranges in δ13C values were observed in SOM collected from profiles in the savanna (−27 to −14‰) and forest regions (−26 to −19‰), reflecting changing distribution of 13C-depleted C3 forest and 13C-enriched C4 savanna vegetation in response to climate change. These results indicate that from about 17,000 to 9000 14C yr B.P., the study area was covered by forest vegetation. Between approximately 9000 and 3000 14C yr B.P., savanna vegetation expanded at the expense of the forest. Although the expansion of savanna did not occur with the same intensity along the study transect, this process was very clearly registered by 13C-enrichment in the SOM. Since 3000 14C yr B.P., the carbon isotope data suggest that forested regions have expanded. This study adds to the mounting evidence that extensive forested areas existed in the Amazon during the last glaciation and that savanna vegetation expanded in response to warm and dry conditions during the early to middle Holocene.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Silva, M.F., Soubiès, F., Suguio, K., Turcq, B., Van der Hammen, T., (1991). Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de l'Amazonie au cours des 60.000 dernières années. Première comparaison avec d'autres régions tropicales. Comptes Rendus de l'Academie des Sciences de Paris, 312, 673678.Google Scholar
Boutton, T.W., (1996). Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change.Boutton, T.W., Yamasaki, S. Mass Spectrometry of Soils, Dekker, New York.4782.Google Scholar
Brasil, Ministério, das Minas e Energia, (1978). Projeto RADAMBRASIL, Folha SB.20-Purus, Rio de Janeiro, 1978. (Levantamento de Recursos Naturais, 17).Google Scholar
Brown, K.S., Ab' Saber, A.N., (1979). Ice-age forest refuges and evolution in the Neotropics: Correlation of paleoclimatological, geomorphological and pedological data with modern biological endemism. Paleoclimas, 5, 130.Google Scholar
Bush, M.B., (1996). Amazonian conservation in a changing world. Biological Conservation, 76, 219228.CrossRefGoogle Scholar
Cerri, C.C., Feller, C., Balesdent, J., Victória, R., Plenecassagne, A., (1985). Application du traçage isotopique naturel en 13C à l'étude de la dynamique de la matière organique dans les sols. Comptes Rendus de l'Academie des Sciences de Paris, 300, 423428.Google Scholar
Colinvaux, P.A., Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., (1996). A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science, 274, 8588.CrossRefGoogle Scholar
Desjardins, T., Filho, A.C., Mariotti, A., Chauvel, A., Girardin, C., (1996). Changes of the forest–savanna boundary in Brazilian Amazonia during the Holocene revealed by isotope ratios of organic carbon. Oecologia, 108, 749756.CrossRefGoogle ScholarPubMed
Ehleringer, J.R., (1991). 13C/12C fractionation and its utility in terrestrial plant studies.Colleman, D.C., Fry, B. Carbon Isotope Techniques, Academic Press, San Diego.187200.CrossRefGoogle Scholar
Ehleringer, J.R., Monson, R.K., (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics, 24, 411439.CrossRefGoogle Scholar
Gottsberger, G., Morawetz, W., (1986). Floristic, structural and phytogeographical analysis of the savannas of Humaitá (Amazonas). Flora, 178, 4151.CrossRefGoogle Scholar
Gouveia, S.E.M., Pessenda, L.C.R., Aravena, R., Boulet, R., Roveratti, R., Gomes, B.M., (1997). Dinâmica de vegetações durante o Quaternário recente no sul do Amazonas indicada pelos isótopos do carbono (12C, 13C e 14C). Geochimica Brasiliensis, 11, 355367.Google Scholar
Gouveia, S.E.M., Pessenda, L.C.R., Boulet, R.R., Aravena, R., Scheel-Ybert, R., (1999). Isótopos do carbono dos carvões e da matéria orgânica do solo em estudos de mudança de vegetação e clima no Quaternário e da taxa de formação de solos do estado de São Paulo. Anais da Academia Brasileira de Ciências, 71, 969980.Google Scholar
Guillet, B., Faivre, P., Mariotti, A., Khobzi, J., (1988). The 14C dates and 13C/12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: Examples from Colombia (South America). Palaeogeography, Palaeoclimatology, Palaeoecology, 65, 5158.CrossRefGoogle Scholar
Haberle, S.G., Maslin, M.A., (1999). Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research, 51, 2738.CrossRefGoogle Scholar
Haffer, J., (1969). Speciation in Amazonian forest birds. Science, 165, 131137.CrossRefGoogle ScholarPubMed
Haffer, J., (1997). Alternative models of vertebrate speciation in Amazonia: An overview. Biodiversity and Conservation, 6, 451476.CrossRefGoogle Scholar
Hooghiemstra, H., Van der Hammen, T., (1998). Neogene and Quaternary development of the neotropical rain forest: The forest refugia hypothesis, and a literature overview. Earth-Science Reviews, 44, 147183.CrossRefGoogle Scholar
Janssen, A., (1985). Flora und Vegetation der Savannen von Humaitá und ihre Standortbedingungen.Google Scholar
Martin, A., Mariotti, A., Balesdent, J., Lavelle, P., Vuattoux, R., (1990). Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biology and Biochemistry, 22, 517523.CrossRefGoogle Scholar
Martin, L., Bertaux, J., Corrège, T., Ledru, M.P., Mourguiart, P., Sifeddine, A., Soubiè, F., Wirrmann, D., Suguio, K., Turcq, B., (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P. Quaternary Research, 47, 117122.CrossRefGoogle Scholar
Martinelli, L.A., Pessenda, L.C.R., Espinoza, E., Camargo, P.B., Telles, E.C., Cerri, C.C., Victoria, R.L., Aravena, R., Richey, J., Trumbore, S., (1996). Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary. Oecologia, 106, 376381.CrossRefGoogle ScholarPubMed
Nordt, L.C., Boutton, T.W., Hallmark, C.T., Waters, M.R., (1994). Late Quaternary vegetation changes in Central Texas based on the isotopic composition of organic carbon. Quaternary Research, 41, 109120.CrossRefGoogle Scholar
Osmond, C.B., Winter, K., Ziegler, H., (1982). Functional significance of different pathways of CO2 fixation in photosynthesis.Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. Physiological Plant Ecology II. Water relations and carbon assimilation, Springer-Verlag, Berlin.479547.CrossRefGoogle Scholar
Pearcy, R.W., Bjorkman, O., Caldwell, M.M., Keeley, J.E., Monson, R.K., Strain, B.R., (1987). Carbon gain by plants in natural environments. Bio Science, 37, 2129.Google Scholar
Pessenda, L.C.R., Aravena, R., Melfi, A.J., Telles, E.C.C., Boulet, R., Valencia, E.P.E., Tomazello, M., (1996). The use of carbon isotopes (12C, 13C, 14C) in soil to evaluate vegetation changes during the Holocene in central Brazil. Radiocarbon, 38, 191201.CrossRefGoogle Scholar
Pessenda, L.C.R., Valencia, E.P.E., Camargo, P.B., Telles, E.C.C., Martinelli, L.A., Cerri, C.C., Aravena, R., Rozanski, K., (1996). Natural radiocarbon measurements in Brazilian soils developed on basic rocks. Radiocarbon, 38, 203208.CrossRefGoogle Scholar
Pessenda, L.C.R., Gouveia, S.E.M., Aravena, R., Gomes, B.M., Boulet, R., Ribeiro, A.S., (1998). 14C dating and stable carbon isotopes of soil organic matter in forest–savanna boundary areas in southern Brazilian Amazon region. Radiocarbon, 40, 10131022.CrossRefGoogle Scholar
Pessenda, L.C.R., Gomes, B.M., Aravena, R., Ribeiro, A.S., Boulet, R., Gouveia, S.E.M., (1998). The carbon isotope record in soils along a forest–cerrado ecosystem transect: Implication for vegetation changes in Rondônia State, southwestern Brazilian Amazon region. The Holocene, 8, 631635.CrossRefGoogle Scholar
Pessenda, L.C.R., Valencia, R., Aravena, R., Telles, E.C.C., Boulet, R., (1998). Palaeoclimate studies in Brazil using carbon isotopes in soils.Wasserman, J.C., Silva-Filho, E.V., Villas-Boas, R. Environmental Geocuemistry in the Tropics, Springer-Verlag, Berlin/New York.716.CrossRefGoogle Scholar
Pessenda, L. C. R, Boulet, R, Aravena, R, Rosolen, V, Gouveia, S. E. M, Ribeiro, A. S, and Lamotte, M. (in press), Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest–savanna transition zone, southern Amazonas State. Brazilian Amazon region, The Holocene.Google Scholar
Sanaiotti, T., (1996). The Woody Flora and Soil of Seven Brazilian Amazonian dry Savanna Areas. University of Stirling, Stirling.Google Scholar
Shubart, H.O.R., (1983). Ecologia e utilização das florestas.Salati, E., Junk, W.J., Shubart, H.O.R. Amazônia: Desenvolvimento, Integração, e Ecologia, Brasiliense, São Paulo.101143.Google Scholar
Schwartz, D., Mariotti, A., Lanfranchi, R.E., Guillet, B., (1986). 13C/12C ratios of soil organic matter as indicator of vegetation changes in the Congo. Geoderma, 39, 97103.CrossRefGoogle Scholar
Sifeddine, A., Fröhlich, F., Fournier, M., Martin, L., Servant, M., Soubiès, F., Turcq, B., Suguio, K., Volkmer-Ribeiro, C., (1994). La sédimentation lacustre indicateur de changements des paléoenvironnements au cours des 30,000 denières années (Carajás, Amazonie, Brésil). Comptes Rendus de l'Academie des Sciences de Paris, 318, 16451652.Google Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G., (1995). Cooling of tropical Brazil (5°C) during the last glacial maximum. Science, 269, 379383.CrossRefGoogle Scholar
Van der Hammen, T., Absy, M.L., (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 247261.CrossRefGoogle Scholar
Vanzolini, P.E., (1970). Série Teses e Monografias Zoologia Sistemática, Geografia e a Origem das Espécies..p. 156.Google Scholar
Vuilleumier, B.S., (1971). Pleistocene changes in the fauna and flora of South America. Science, 173, 771780.CrossRefGoogle ScholarPubMed