Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T10:57:42.209Z Has data issue: false hasContentIssue false

Marine radiocarbon reservoir effect along the northern Chile–southern Peru coast (14–24°S) throughout the Holocene

Published online by Cambridge University Press:  20 January 2017

Luc Ortlieb*
Affiliation:
PALEOTROPIQUE, Institut de Recherche pour le Développement, 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France LOCEAN, UMR 7159 (Université Pierre & Marie Curie, CNRS, IRD, MNHN), 4 place Jussieu, 75230 Paris Cedex 05, France
Gabriel Vargas
Affiliation:
Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
Jean-François Saliège
Affiliation:
LOCEAN, UMR 7159 (Université Pierre & Marie Curie, CNRS, IRD, MNHN), 4 place Jussieu, 75230 Paris Cedex 05, France
*
Corresponding author. LOCEAN, UMR 7159 (CNRS, IRD, MNHN, Université Pierre et Marie Curie), Centre IRD France-Nord, 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France. Fax: + 33 148025554.

Abstract

Through an extensive sampling and dating of pairs of associated shells and charcoal fragments combined with reanalysis of all the available previous data, we reconstruct the evolution throughout the Holocene of the regional marine radiocarbon reservoir effect (ΔR) values along the northern Chile–southern Peru area (14°–24°S). After elimination of the cases in which the terrestrial component yielded older ages than the marine shells to which they were associated, the study is based upon data from 47 pairs of associated marine and terrestrial material.

Our results suggest major changes in both the magnitude and variability range of ΔR during the whole Holocene Period: (1) between 10,400 and 6840 cal yr BP, high values (511 ± 278 yr) probably result from a strengthened SE Pacific subtropical anticyclone and shoaling of equatorial subsurface waters during intensified upwelling events; (2) between 5180 and 1160 cal yr BP, lower values (226 ± 98 yr) may reflect a major influence of subtropical water and diminished coastal upwelling processes; (3) during the last ~ thousand years, high values (between 355 ± 105 and 253 ± 207 yr) indicate an increased influence of 14C-depleted water masses and of ENSO. For the early twentieth century a ΔR value of 253 ± 207 yr was calculated.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albero, M.C., Angiolini, F.E., and Piana, E.L. Discordant ages related to reservoir effect of associated archaeologic remains from the Tunnel site, Beagle Channel, Argentine Republic. Radiocarbon 28, (1986). 748753.CrossRefGoogle Scholar
Angulo, R.J., Reimer, P.O.J., de Souza, M.C., Scheel-Ybert, R., Tenório, M.C., Disaró, S.T., and Gaspar, M.D. A tentative determination of upwelling influence on the paleosurficial marine water reservoir effect in Southeasten Brasil. Radiocarbon 49, (2007). 12551259.CrossRefGoogle Scholar
Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J., Melieres, M.A., Sonstegaard, E., and Duplessy, J.C. The North Atlantic atmosphere–sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126, (1994). 275287.Google Scholar
Brandhorst, W. Condiciones oceanográficas estivales frente a la costa de Chile. Revista de Biología Marina (Valparaiso) 14, 3 (1971). 4584.Google Scholar
Broecker, W.S., Andree, M., Bonani, G., Wolfli, W., Oeschger, H., Klas, M., Mix, A., and Curry, W. Preliminary estimates for the radiocarbon age of deep water in the glacial ocean. Paleoceanography 3, (1988). 659669.Google Scholar
Burr, G.S., Beck, J.W., Corrège, T., Cabioch, G., Taylor, F.W., and Donahue, D.J. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51, (2009). 319335.CrossRefGoogle Scholar
Culleton, B.J., Kennett, D.J., Ingram, B.L., Erlandson1, J.M., and Southon, J.R. Intrashell radiocarbon variability in marine molluscs. Radiocarbon 48, (2006). 387400.Google Scholar
Dezileau, L., Ulloa, O., Hebbeln, D., Lamy, F., Reyss, J.L., and Fontugne, M. Iron control of past productivity in the coastal upwelling system off the Atacama Desert, Chile. Paleoceanography 19, (2004). PA3012 http://dx.doi.org/10.1029/2004PA001006Google Scholar
Dye, T. Apparent ages of marine shells: implications for archaeological dating in Hawai'i. Radiocarbon 36, (1994). 5157.CrossRefGoogle Scholar
Eiriksson, J., Larsen, G., Knudsen, K.L., Heinemeier, J., and Simonarson, L.A. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23, (2004). 22472268.CrossRefGoogle Scholar
Fallon, S.J., and Guilderson, T.P. Surface water processes in the Indonesian throughflow as documented by a high-resolution coral Δ14C record. Journal of Geophysical Research 113, (2008). C09001 http://dx.doi.org/10.1029/2008JC004722Google Scholar
Finocchiaro, F., Langone, L., Colizza, E., Fontolan, G., Giglio, F., and Tuzzi, E. Record of the early Holocene warming in a laminated sediment core from Cape Hallett Bay (Northern Victoria Land, Antarctica). Global and Planetary Change 45, (2005). 193206.CrossRefGoogle Scholar
Fontugne, M., Carré, M., Bentaleb, I., Julien, M., and Lavallée, D. Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene. Radiocarbon 46, (2004). 531537.CrossRefGoogle Scholar
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M., Ralska-Jasiewiczowa, M., Roanski, K., Tinserat, N., Walanus, A., Wicik, B., and Wieckowski, K. High concentrations of atmospheric 14C during the Younger Dryas cold episode. Nature 377, (1995). 414417.Google Scholar
Grosjean, M., Valero-Garcés, B., Geyh, B., Messerli, M.A., Schotterer, U., Schreier, H., and Kelts, K. Mid- and late-Holocene limnogeology of Laguna del Negro Francisco, northern Chile, and its palaeoclimatic implications. Holocene 7, (1997). 151159.Google Scholar
Head, J., Jones, R., and Allen, J. Calculation of the marine reservoir effect from the dating of shell-charcoal paired samples from an aboriginal midden on Great Glennie Island, Bass Strait. Australian Archaeology 17, (1983). 99112.Google Scholar
Hebbeln, D., Marchant, M., Freudenthal, T., and Wefer, G. Surface distribution along the Chilean continental slope related to upwelling and productivity. Marine Geology 164, (2000). 119137.Google Scholar
Hebbeln, D., Marchant, M., and Wefer, G. Paleoproductivity in the southern Peru–Chile Current through the last 33, 000 yr. Marine Geology 186, (2002). 487504.Google Scholar
Heusser, C.J. Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 107127.CrossRefGoogle Scholar
Hughen, K.A., Overpeck, J.T., Lehman, S.J., Kashgarian, M., Southon, J., Peterson, L.C., Alley, R., and Sieman, D.M. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, (1998). 6568.Google Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, (2004). 10591086.Google Scholar
Ingram, B. Differences in radiocarbon age between shell and charcoal from a Holocene shellmound in northern California. Quaternary Research 49, (1998). 102110.Google Scholar
Jenny, B., Valero-Garcés, B.L., Villa-Martínez, R., Urrutia, R., Geyh, M.A., and Veit, H. Early to mid-Holocene Aridity in Central Chile and the Southern Westerlies: The Laguna Aculeo Record (34ºS). Quaternary Research 58, (2002). 160170. http://dx.doi.org/10.1006/qres.2002.2370Google Scholar
Jenny, B., Willhelm, D., and Valero-Garcés, B. The southern westerlies in Central Chile: Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33º50' S). Climate Dynamics 20, (2003). 269280.CrossRefGoogle Scholar
Jones, K.B., Hodgins, G.W.L., Dettman, D.L., Andrus, C.F.T., Nelson, A., and Etayo-Cadavid, M.F. Seasonal variations in Peruvian marine reservoir age from prebomb Argopecten purpuratus shell carbonate. Radiocarbon 49, (2007). 877888.Google Scholar
Kennett, D.J., Ingram, B.L., Erlandson, J.M., and Walker, P. Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, Southern California. Journal of Archaeological Science 34, (1997). 10511059.CrossRefGoogle Scholar
Kennett, D.J., Ingram, B.L., Southon, J., and Wise, K. Differences in 14C age between stratigraphically associated charcoal and marine shell from archaic period site of kilometer 4, southern Peru: old wood or old water?. Radiocarbon 44, (2002). 5358.Google Scholar
Kim, J.-H., Schneider, R., Hebbeln, D., Müller, P.J., and Wefer, G. Last deglacial sea-surface temperature evolution in the Southeast Pacific compared to climate changes on the South American continent. Quaternary Science Reviews 21, (2002). 20852097.Google Scholar
Kovanen, D.J., and Easterbrook, D.J. Paleodeviations of radiocarbon marine reservoir values for the northeast Pacific. Geology 30, (2002). 243246.Google Scholar
Kwiecien, O., Arz, H.W., Lamy, F., Wulf, S., Bahr, A., Röhl, U., and Haug, G.H. Estimated reservoir ages of the black sea since the last Glacial. Radiocarbon 50, (2008). 99108.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., and Wefer, G. Late Quaternary processional cycles of terrigenous sediment input off the Norte Chico, Chile (27.58 S) and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 141, (1998). 233251.Google Scholar
Lamy, F., Hebbeln, D., and Wefer, G. High-resolution marine record of climatic change in mid-latitude Chile during the last 28, 000 years based on terrigenous sediments parameters. Quaternary Research 51, (1999). 8393.Google Scholar
Lamy, F., Klump, J., Hebbeln, D., and Wefer, G. Late Quaternary rapid climate change in northern Chile. Terra Nova 12, (2000). 813.Google Scholar
Lamy, F., Rühlemann, C., Hebbeln, D., and Wefer, G. High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene. Paleoceanography 17, (2002). 1028 http://dx.doi.org/10.1029/2001PA000727Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., and Stoner, J. Antarctic Timing of Surface Water Changes off Chile and Patagonian Ice Sheet Response. Science 304, (2004). 19591962.CrossRefGoogle ScholarPubMed
Lewis, C.A., Reimer, P.J., and Reimer, R.W. Marine reservoir corrections; St. Helena, South Atlantic Ocean. Radiocarbon 2008, 50 (2008). 275280.Google Scholar
Little, E. Radiocarbon age calibration at the archaeological sites of coastal Massachusetts and vicinity. Journal of Archaeological Science 20, (1993). 457471.Google Scholar
Marchant, M., Hebbeln, D., and Wefer, G. High resolution record of the last 13, 300 years from the upwelling area off Chile. Marine Geology 161, (1999). 115128.Google Scholar
McCormac, F.G., Reimer, P.J., Hogg, A.G., Higham, T.F.G., Baillie, M.G.L., Palmer, J., and Stuiver, M. Calibration of the radiocarbon time scale for the southern hemisphere: AD 1850-950. Radiocarbon 44, (2002). 641651.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J. SHCal04 Southern Hemisphere calibration, 0-11.0 cal kyr BP. Radiocarbon 46, (2004). 10871092.CrossRefGoogle Scholar
Morales, C.E., Blanco, J.L., Braun, M., Reyes, H., and Silva, N. Chlorophyll-a distribution and associated oceanographic conditions off northern Chile during the winter and spring 1993. Deep-Sea Research 43, (1996). 267389.Google Scholar
Muscheler, R., Beer, J., Wagner, G., and Finkel, R.C. Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature 408, (2000). 567570.CrossRefGoogle ScholarPubMed
Ndeye, M. Marine Reservoir ages in northern Senegal and Mauritania coastal waters. Radiocarbon 50, (2008). 281288.CrossRefGoogle Scholar
Ortlieb, L., and Vargas, G. Debris-flow deposits and El Niño manifestations along the hyperarid southern Peru/northern Chile coast. Haas, J., and Dillon, M.O. El Niño in Peru: Biology and culture over 10,000 years. Fieldiana Botany vol. 34, (2003). 2451.Google Scholar
Owen, B.D. Marine reservoir age estimates for the far south coast of Peru. Radiocarbon 44, (2002). 701708.CrossRefGoogle Scholar
Petchey, F., Anderson, A., Zondervan, A., Ulm, S., and Hogg, A. New marine ΔR values for the South Pacific Subtropical Gyre. Radiocarbon 50, (2008). 373397.Google Scholar
Phelan, M. A ΔR correction value for Samoa from known-age marine shells. Radiocarbon 41, (1999). 99101.Google Scholar
Robinson, S.W., and Thompson, G. Radiocarbon corrections for marine shell dates with application to southern Pacific Northwest coast prehistory. Syezis 14, (1981). 4557.Google Scholar
Rowe, J.H. An interpretation of radiocarbon measurement on archaeological simples from Peru. compilers Chatters, R.M., and Olson, E.A. Proceedings of the 6th International Conference Radiocarbon and Tritium. (1965). Clearinghouse for Federal Scientific and Technical Information, Springfield (Virginia. 187198.Google Scholar
Schiffer, M.B. Radiocarbon dating and the “old wood” problem: the case of the Hokokam chronology. Journal of Archaeological Science 13, (1986). 1330.Google Scholar
Schneider, W., Fuenzalida, R., Rodrıguez-Rubio, E., and Garces-Vargas, J. Characteristics and formation of Eastern South Pacific Intermediate Water. Geophysical Research Letters 30, 11 (2003). 1581 http://dx.doi.org/10.1029/2003GL017086, 200Google Scholar
Schwerdtfeger, W. Climates of Central and South America. World Survey of Climatology 12, (1976). Google Scholar
Shackleton, N.J., Duplessy, J.C., Arnold, M., Maurice, P., Hall, M., and Cartlidge, J. Radiocarbon age of the last glacial Pacific Deep Water. Nature 335, (1988). 708711.Google Scholar
Sikes, E.L., Samson, C.R., Guilderson, T.P., and Howard, W.R. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405, (2000). 555559.Google Scholar
Southon, J.R., Nelson, D.E., and Vogel, J.S.A. Record of past ocean-atmosphere radiocarbon difference from the northeast Pacific. Paleoceanography 5, (1990). 197206.Google Scholar
Southon, J.R., Rodman, A., and True, D. A comparison of marine and terrestrial radiocarbon ages from northern Chile. Radiocarbon 37, (1995). 389393.CrossRefGoogle Scholar
Strub, T., Mesías, J., Montecino, V., Rutllant, J., and Salinas, S. Coastal ocean circulation off western South America. Robinson, Allan R., Brink, Kenneth H. The Sea vol. 11, (1998). 273313.Google Scholar
Stuiver, M., and Braziunas, T.F. Modeling atmospheric 14C influences and 14C ages of marine samples to 10 000 B.C. Radiocarbon 35, (1993). 137191.Google Scholar
Stuiver, M., and Polach, H.A. A discussion and reporting of 14C data. Radiocarbon 19, (1977). 355363.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Stuiver, M., Pearson, G.W., and Braziunas, T.F. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28, (1986). 9801021.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., and Braziunas, T.F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 28, (1998). 9801021.Google Scholar
Taylor, R.E. Radiocarbon dating: An archaeological perspective. (1987). Academic Press, New York.Google Scholar
Taylor, R.E., and Berger, R. Radiocarbon content of marine shells from the Pacific coast of central and south America. Science 158, (1967). 11801182.Google Scholar
Toggweiler, J.R., Dixon, K., and Broecker, W.S. The Peru upwelling and the ventilation of the South Pacific Thermocline. Journal of Geophysical Research 96, C11 (1991). 2046720497.CrossRefGoogle Scholar
Torres, R., Turner, D.R., Rutllant, J., Sobrazo, M., Antezana, T., and Gonzalez, H. CO2 outgassing off central Chile (31-30ºS) and northern Chile (24-23ºS) during austral summer 1997: the effect of wind intensity on the upwelling and ventilation of CO2-rich waters. Deep Sea Research I 49, (2002). 14131429.Google Scholar
Ulm, S. Marine and estuarine reservoir effects in central Queensland, Australia: Determination of ΔR values. Geoarchaeology 17, (2002). 319348.Google Scholar
Van Beek, P., Reyss, J.-L., Paterne, M., Gersonde, R., van der Loeff, M.R., and Kuhn, G. 226Ra in barite: Absolute dating of Holocene Southern Ocean sediments and reconstruction of sea-surface reservoir ages. Geology 30, (2002). 731734.Google Scholar
Vargas, G., Ortlieb, L., Pichon, J.J., Pujos, M., and Bertaux, J. Sedimentary facies and high resolution primary production inferences from laminated diatomaceous sediments off northern Chile. Marine Geology 211, (2004). 7999.Google Scholar
Vargas, G., Rutllant, J., and Ortlieb, L. ENSO tropical-extratropical climate teleconnections and mechanisms for Holocene debris flows along the hyperarid coast of western South America (17º-24ºS). Earth and Planetary Sciences Letters 249, (2006). 467483.Google Scholar
Veit, H. Southern Westerlies during the Holocene deduced from geomorphological studies in the Norte Chico, northern Chile (27-33ºS). Palaeogeography, Palaeoclimatology, Palaeoecology 123, (1996). 107119.Google Scholar
Villagrán, C., and Varela, J. Palynological evidence for increased aridity on the Central Chilean coast during the Holocene. Quaternary Research 34, (1990). 198207.Google Scholar
Villa-Martínez, R., Villagrán, C., and Jenny, B. The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quaternary Research 60, (2003). 284293.Google Scholar