Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T12:08:02.408Z Has data issue: false hasContentIssue false

Mid-holocene climate change in Lake Bosumtwi, Ghana

Published online by Cambridge University Press:  20 January 2017

James Russell*
Affiliation:
Large Lakes Observatory, University of Minnesota, 10 University Drive, Duluth, MN 55812, USA Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
Michael R. Talbot
Affiliation:
Geological Institute, University of Bergen, Allégt. 41, 5007 Bergen, Norway
Brian J. Haskell
Affiliation:
Limnological Research Center, University of Minnesota, 310 Pillsbury Dr. SE, Minneapolis, MN 55455, USA
*
*Corresponding author. Fax: +1-218-726-6979.Email Address:russ0154@umn.edu (J. Russell)

Abstract

Lake Bosumtwi is one of the most widely studied palaeoclimate archives in West Africa. Results from numerous AMS 14C dates of samples from four piston cores from Lake Bosumtwi show that an abrupt sedimentary transition from a mid-Holocene sapropel to calcareous laminated muds occurred at about 3200 cal yr B.P. High-resolution analyses of the nitrogen isotopic composition of organic matter across this transition confirm its abrupt nature, and suggest that the change may signal a step toward increased aridity and intensified surface winds that affected western equatorial Africa from Ghana to the Congo basin. Northern and Eastern Africa experienced a similar abrupt shift toward aridity during the late Holocene, but at about 5000 cal yr B.P., a difference in timing that illustrates the regional nature of climate changes during the Holocene and the importance of feedback mechanisms in regulating Holocene climate variability. Furthermore, an abrupt change at about 3000 cal yr B.P. occurs at several sites adjacent to the tropical and subtropical Atlantic, which may hint at major changes in the surface temperatures of the tropical Atlantic and/or Pacific at this time.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Matthews, M., Ayalon, A., and Kaufman, A., (1997). Late Quaternary palaeoclimate in the Eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, 155 168.Google Scholar
Beadle, L.C., (1981). The Inland Waters of Tropical Africa. Longman, London.Google Scholar
Beuning, K.R.M., Talbot, M.R., and Kelts, K.R., (1997). A revised 30,000-year palaeoclimatic and palaeohydrologic history of Lake Albert, East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 259 279.CrossRefGoogle Scholar
Brown, T.A., Nelson, D.E., Mathews, R.W., Vogel, J.S., and Southon, J.R., (1989). Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32, 205 212.CrossRefGoogle Scholar
Camberlin, P., Janicot, S., and Poccard, I., (2001). Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperatures: Atlantic vs. ENSO. International Journal of Climatology 21, 973 1005.CrossRefGoogle Scholar
Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., and Hoelzmann, P., (1999). Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters 26, 2037 2040.Google Scholar
Clement, A., Seager, R., and Cane, M.A., (1999). Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography 14, 441 456.Google Scholar
Cullen, H.M., deMenocal, P., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T., and Sirocko, F., (2000). Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28, 379 382.2.0.CO;2>CrossRefGoogle Scholar
Curtis, J.H., Hodell, D.A., (1993). An isotopic and trace element study of ostracods from Lake Miragoane, Haiti: a 10,500 year record of paleosalinity and paleotemperature changes in the Caribbean. in: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records, AGU Monograph., vol. 78, pp. 135152.Google Scholar
Deines, P., (1980). The isotopic composition of reduced organic carbon. Fritz, P., and Fontes, J.C. Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam. 330 350.Google Scholar
DeMenocal, P., (2001). Cultural responses to climate change during the late Holocene. Science 292, 667 673.Google Scholar
DeMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M., (2000). Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288, 2198 2202.CrossRefGoogle ScholarPubMed
Elenga, H., Schwartz, D., and Vincens, A., (1994). Pollen evidence of Late Quaternary vegetation and inferred climate changes in the Congo. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 345 356.Google Scholar
Fontaine, B., Janicot, S., and Roucou, P., (1999). Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region. Climate Dynamics 15, 451 473.Google Scholar
Gasse, F., (2000). Hydrological changes in the African tropics since the last glacial maximum. Quaternary Science Reviews 19, 189 211.Google Scholar
Gasse, F., Arnold, M., Fontes, J., Ch., Fort, M., Gilvert, E., Huc, A., Li Bingyan, , Li Yuanfang, , Liu Qing, , Lelieres, F., Van Campo, E., Wang Fubao, , Zhang Quingsong, (1991). A 13,000 yr climate record from western Tibet. Nature 353, 742745.Google Scholar
Gasse, F., and Van Campo, E., (1994). Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth and Planetary Science Letters 126, 435 456.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U., (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304 1308.Google Scholar
Hecky, R.E., Kling, H., (1987). Phytoplankton ecology of the great lakes in the rift valleys of central Africa Ergebnisse der Limnologie 25, 197 228.Google Scholar
Kadomura, H., and Kiyonaga, J., (1994). Origin of grassfields landscape in the west Cameroon highlands. Kadomura, H. Savannization Process in Tropical Africa II. University of Tokyo, Tokyo. 47 85.Google Scholar
Kelts, K.R., Briegel, U., Ghilardi, K., and Hsu, K., (1986). The limnogeology-ETH coring system. Schweizerische Zeitschrift für Hydrologie 48, 104 115.Google Scholar
Lee-Thorp, J.A., Holmgren, K., Lauritzen, S.E., Linge, H., Moberg, A., Partridge, T.C., Stevenson, C., and Tyson, P.D., (2001). Rapid climate shifts in the southern African interior throughout the mid to late Holocene. Geophysical Research Letters 28, 4507 4510.Google Scholar
Lemcke, G., Sturm, M., (1997). δ18O and trace element measurements as proxy for the reconstruction of climate change in Lake Van (Turkey): Preliminary results. in: Dalfes, N., Kukla, G., Weiss, H. (Eds.), Third Millennium B.C. Climate Change and Old World Collapse, Springer, Berlin., NATO ASI Series I, vol. 49, pp. 653678.Google Scholar
Maley, J., and Brenac, P., (1998). Vegetation dynamics, palaeoenvironments, and climatic changes in the forests of western Cameroon during the last 28,000 yr B.P.. Review of Palaeobotany and Palynology 99, 157 187.CrossRefGoogle Scholar
Maley, J., (1997). Middle to late Holocene changes in tropical Africa and other continents: palaeomonsoon and sea surface temperature changes. in: Dalfes, N., Kukla, G., Weiss, H. (Eds.), Third Millennium B.C. Climate Change and Old World Collapse, Springer, Berlin., NATO ASI Series I, vol. 49, pp. 611641.Google Scholar
Nicholson, S.E., (1986). The spatial coherence of African rainfall anomalies. interhemispheric teleconnections. Journal of Climatology and Applied Meteorology 25, 1365 1381.Google Scholar
Reynaud-Ferrera, I., Maley, J., and Wirrmann, D., (1997). Végétation et climat dans les forêt du Sud- Ouest Cameroun depuis 4,770 ans BP. analyse pollinique des sédiments du Lac Ossa. C. R. Academie du Science Paris série IIa 322, 749 755.Google Scholar
Sowunmi, M.A., (2002). Environmental and human responses to climatic events in West and West Central Africa during the late Holocene. Hassan, F.A. Droughts, Food and Culture: Ecological Change and Food Security in Africa’s Later Prehistory. Kluwer, New York. 95 104.Google Scholar
Stuiver, M., and Reimer, P.J., (1993). Extended 14C calibration database and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215 230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d. Plicht, J., and Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 1041 1083.Google Scholar
Talbot, M.R., (1988). The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa. in: Fleet, A.J., Kelts, K.R., Talbot, M.R. (Eds.), Lacustrine Petroleum Source Rocks. pp. 2943. Geological Society of America Special Publication No. 40 Google Scholar
Talbot, M.R., and Delibrias, G., (1980). A new late Pleistocene-Holocene water-level curve for Lake Bosumtwi, Ghana. Earth & Planetary Science Letters 47, 336 344.Google Scholar
Talbot, M.R., and Johannessen, T., (1992). A high resolution palaeoclimatic record for the last 27 500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth & Planetary Science Letters 110, 23 37.CrossRefGoogle Scholar
Talbot, M.R., and Kelts, K.R., (1986). Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14, 912 916.2.0.CO;2>CrossRefGoogle Scholar
Talbot, M.R., Livingstone, D.A., Palmer, P., Maley, J., Melack, J.M., Delibrias, G., and Gulliksen, S., (1984). Preliminary results from sediment cores from Lake Bosumtwi, Ghana. Palaeoecology of Africa and the Surrounding Islands 16, 173 192.Google Scholar
Vincens, A., Schwartz, D., Elenga, H., Reynaud-Farrera, I., Alexandre, A., Bertaux, J., Mariotti, A., Martin, L., Meunier, J.D., Nguestop, F., Servant-Vildary, M., Vildary, S., and Wirrmann, D., (1999). Forest response to climate changes in Atlantic Equatorial Africa during the last 4000 years BP and inheritance on the modern landscapes. Journal of Biogeography 26, 879 885.Google Scholar
Vincens, A., Schwartz, D., Bertaux, J., Elenga, H., and de Namur, C., (1998). Late Holocene climatic changes in western equatorial Africa from pollen from Lake Sinnda, South Congo. Quaternary Research 50, 34 45.CrossRefGoogle Scholar
Weiss, H, (1997). Late third millennium abrupt climate change and social collapse in West Asia and Egypt. in: Dalfes, N., Kukla, G., Weiss, H. (Eds.), Third Millennium B.C. Climate Change and Old World Collapse, Springer, Berlin., NATO ASI Series I, vol. 49, pp. 712724.Google Scholar
Wheeler, C.W., Overpeck, J.T., Beck, J.W., Arko, J., and Sharp, W.E., (2002). The varved sediments of Lake Bosumtwi, Ghana and implications for a new chronology of West African hydrologic change during the Late Quaternary. EOS Transactions AGU 83 (Fall Meeting Supplement), Abst. PP62A0322.Google Scholar