Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T19:51:57.296Z Has data issue: false hasContentIssue false

Millennial-scale variations in western Sierra Nevada precipitation during the last glacial cycle MIS 4/3 transition

Published online by Cambridge University Press:  20 January 2017

Jessica L. Oster*
Affiliation:
Earth and Environmental Sciences, Vanderbilt University, USA
Isabel P. Montañez
Affiliation:
Earth and Planetary Sciences, University of California, Davis, USA
Regina Mertz-Kraus
Affiliation:
Berkeley Geochronology Center, USA
Warren D. Sharp
Affiliation:
Berkeley Geochronology Center, USA
Greg M. Stock
Affiliation:
National Park Service, Yosemite National Park, USA
Howard J. Spero
Affiliation:
Earth and Planetary Sciences, University of California, Davis, USA
John Tinsley
Affiliation:
US Geological Survey, Menlo Park, CA, USA
James C. Zachos
Affiliation:
Earth and Planetary Sciences, University of California, Santa Cruz, USA
*
*Corresponding author at: 5726 Stevenson Center, 7th Floor, Nashville, TN 37240, USA.E-mail address:jessica.l.oster@vanderbilt.edu (J.L. Oster).

Abstract

Dansgaard–Oeschger (D–O) cycles had far-reaching effects on Northern Hemisphere and tropical climate systems during the last glacial period, yet the climatic response to D–O cycles in western North America is controversial, especially prior to 55 ka. We document changes in precipitation along the western slope of the central Sierra Nevada during early Marine Oxygen Isotope Stages (MIS) 3 and 4 (55–67 ka) from a U-series dated speleothem record from McLean's Cave. The timing of our multi-proxy geochemical dataset is coeval with D–O interstadials (15–18) and stadials, including Heinrich Event 6. The McLean's Cave stalagmite indicates warmer and drier conditions during Greenland interstadials (GISs 15–18), signified by elevated δ18O, δ13C, reflectance, and trace element concentrations, and less radiogenic 87Sr/86Sr. Our record extends evidence of a strong linkage between high-latitude warming and reduced precipitation in western North America to early MIS 3 and MIS 4. This record shows that the linkage persists in diverse global climate states, and documents the nature of the climatic response in central California to Heinrich Event 6.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmerom, Y., Polyak, V., and Burns, S.J. Variable moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geoscience 3, (2010). 114117.Google Scholar
Atkinson, T.C. Growth mechanisms of speleothems in Castleguard Cave, Columbian Icefields, Alberta, Canada. Arctic Alpine Research 15, (1983). 523526.Google Scholar
Banner, J.L., Guilfoyle, A., James, E.W., Stern, L.A., and Musgrove, M. Seasonal variations in modern speleothem calcite growth in central Texas, U.S.A.. Journal of Sedimentary Research 77, (2007). 615622.Google Scholar
Belli, R., Frisia, S., Borsato, A., Drysdale, R., Hellstrom, J., Zhao, J.-x., and Spötl, C. Regional climate variability and ecosystem responses to the last deglaciation in the northern hemisphere from stable isotope data and calcite fabrics in two northern Adriatic speleothems. Quaternary Science Reviews 72, (2013). 146158.Google Scholar
Benson, L., Lund, S., Negrini, R., Linsley, B., and Zic, M. Response of North American Great Basin Lakes to Dansgaard–Oeschger oscillations. Quaternary Science Reviews 22, (2003). 22392251.Google Scholar
Benson, L.V., Lund, S.P., Smoot, J.P., Rhode, D.E., Spencer, R.J., Verosub, K.L., Louderback, L.A., Johnson, C.A., Rye, R.O., and Negrini, R.M. The rise and fall of Lake Bonneville between 45 and 10.5 ka. Quaternary International 235, (2011). 5769.Google Scholar
Berkelhammer, M., Stott, L., Yoshimura, K., Johnson, K., and Sinha, A. Synoptic and mesoscale controls on the isotopic composition of precipitation in the western United States. Climate Dynamics 38, (2012). 433454.CrossRefGoogle Scholar
Bischoff, J.L., and Cummins, K. Wisconsin glaciation of the Sierra Nevada (79,000–15,000 yr B.P.) as recorded by rock flour in sediments of Owens Lake, California. Quaternary Research 55, (2001). 1424.Google Scholar
Boch, R., Cheng, H., Spötl, C., Edwards, R.L., Wang, X., and Häuselmann, Ph. NALPS: a precisely dated European climate record 120–60 ka. Climate of the Past 7, (2011). 12471259.Google Scholar
Boch, R., Spötl, C., and Frisia, S. Origin and palaeoenvironmental significance of lamination in stalagmites from Katerloch Cave, Austria. Sedimentology 58, (2011). 508531.Google Scholar
Bowen, O.E. The Mineral Economics of the Carbonate Rocks: Limestone and Dolomite Resources of California. (1973). California Division of Mines and Geology, Sacramento.Google Scholar
Bromwich, D.H., Toracinta, E.R., Wei, H.L., Oglesby, R.J., Fastook, J.L., and Hughes, T.J. Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the LGM. Journal of Climate 17, (2004). 34153433.2.0.CO;2>CrossRefGoogle Scholar
Brook, G.A., Ellwood, B.B., Railsback, L.B., and Cowart, J.B. A 164 ka record of environmental change in the American Southwest from a Carlsbad Cavern speleothem. Palaeogeography, Palaeoclimatology, Palaeoecology 237, (2006). 483507.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y. The half-lives of uranium-234 and Thorium-230. Chemical Geology 169, (2000). 1733.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., and Wang, X. Ice age terminations. Science 326, (2009). 248252.CrossRefGoogle ScholarPubMed
Chou, K., Garrels, R.M., and Wollast, R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chemical Geology 78, (1989). 269282.Google Scholar
Clark, W.B., and Lydon, P.A. Mines and Mineral Resources of Calaveras County, California. (1962). California Division of Mines and Geology, San Francisco.Google Scholar
Clement, A.C., and Peterson, L.C. Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics 46, (2008). RG4002 (2006RG000204) Google Scholar
Cole, K. Late Pleistocene vegetation of Kings Canyon, Sierra Nevada, California. Quaternary Research 19, (1983). 117129.Google Scholar
Core Team, R. R: A Language and Environment for Statistical Computing. (2012). R Foundation for Statistical Computing, Vienna, Austria. 3-900051-07-0 (http://www.R-project.org/)Google Scholar
Cowell, D.W., and Ford, D.C. Hydrochemistry of a dolomite karst: the Bruce Peninsula of Ontario. Canadian Journal of Earth Science 17, (1980). 520526.Google Scholar
Dansgaard, W. Stable isotopes in precipitation. Telus 16, (1964). 436468.Google Scholar
Dansgaard, W., Johnsen, S., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N., Hammer, C.U., and Oeschger, H. North Atlantic climatic oscillations revealed by deep Greenland ice cores. Hansen, J.E., and Takahashi, T. Climate Processes and Climate Sensitivity. (1984). American Geophysical Union, Washington DC. 288298.Google Scholar
Davis, O.K. Pollen analysis of Tulare Lake, California: Great Basin-like vegetation in Central California during the full-glacial and early Holocene. Review of Palaeobotany and Palynology 107, (1999). 249257.Google Scholar
DePaolo, D.J., and Ingram, B.L. High resolution stratigraphy with strontium isotopes. Science 277, (1985). 938941.Google Scholar
Dettinger, D. Climate change, atmospheric rivers, and floods in California—a multimodel analysis of storm frequency and magnitude changes. Journal of American Water Resources As 47, (2011). 514523.Google Scholar
Fairchild, I.J., Borsato, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y., McDermott, F., and Spiro, B. Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chemical Geology 166, (2000). 255269.CrossRefGoogle Scholar
Frappier, A.B., Sahagian, D., Carpenter, S.J., González, L.A., and Frappier, B.R. Stalagmite stable isotope record of recent tropical cyclone events. Geology 35, (2007). 111114.Google Scholar
Frisia, S., and Borsato, A. Karst. Developments in Sedimentology 61, (2010). 269318.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Fairchild, I.J., and McDermott, F. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland. Journal of Sedimentary Research 70, (2000). 11831196.CrossRefGoogle Scholar
Genty, D., and Quinif, Y. Annually laminated sequences in the internal structure of some Belgian stalagmites—importance for paleoclimatology. Journal of Sedimentary Research 66, (1996). 275288.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, (2003). 833837.Google Scholar
Harrison, S.P., and Sanchez Goñi, M.F. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quaternary Science Reviews 29, (2010). 29572980.Google Scholar
Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic ocean during the past 130,000 years. Quaternary Research 29, (1988). 142152.CrossRefGoogle Scholar
Hellstrom, J.C., and McCulloch, M.T. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth and Planetary Science Letters 179, (2000). 287297.Google Scholar
Hemming, S.R. Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Review of Geophysics 42, (2004). RG1005 (2003RG000128) Google Scholar
Hendy, C.H. The isotopic geochemistry of speleothems - I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta 35, (1971). 801824.Google Scholar
Hendy, I.L., and Kennett, J.P. Dansgaard–Oeschger cycles and the California Current system: planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program hole 893A. Paleoceanography 15, (2000). 3042.Google Scholar
Higgins, R.W., Chen, Y., and Douglas, A.V. Interannual variability of the North American warm season precipitation regime. Journal of Climate 12, (1999). 653680.Google Scholar
Holden, N.E. Total half-lives for selected nuclides. Pure and Applied Chemistry 62, (1990). 941958.Google Scholar
Horwitz, E.P., Chiarizia, R., and Dietz, M.L. A novel strontium-selective extraction chromatographic resin. Solvent Extraction and Ion Exchange 10, 2 (1992). 313336.Google Scholar
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M. Precise measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, (1971). 18891906.Google Scholar
Jiménez-Moreno, G., Anderson, R.S., and Fawcett, P.J. Orbital- and millennial-scale vegetation and climate changes of the past 225 ka from Bear Lake, Utah–Idaho (USA). Quaternary Science Reviews 26, (2007). 17131724.Google Scholar
Jo, K., Woo, K.S., Yi, S., Yang, D.Y., Lim, H.S., Wang, Y., Cheng, H., and Edwards, R.L. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature (2014). http://dx.doi.org/10.1038/nature13076 Google Scholar
Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D., Günther, G., and Enzweiler, J. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 25, (2011). 397429.CrossRefGoogle Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.P. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, (1992). 311313.Google Scholar
Kageyama, M., Paul, A., Roche, D.M., and Van Meerbeeck, C.J. Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturing circulation: a review. Quaternary Science Reviews 29, (2010). 29312956.Google Scholar
Kanner, L.C., Burns, S.J., Cheng, H., and Edwards, R.L. High-latitude forcing of the South American Summer Monsoon during the last glacial. Science 335, (2012). 570573.Google Scholar
Kendall, A.C., and Broughton, P.J. Origin of fabrics in speleothems composed of columnar calcite crystals. Journal of Sedimentary Petrology 48, (1978). 519538.Google Scholar
Kim, S.-T., and O'Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Science 61, (1997). 34613475.Google Scholar
Kim, S.-J., Crowley, T.J., Erickson, D.J., Govindasamy, B., Duffy, P.B., and Lee, B.Y. High resolution climate simulation of the last glacial maximum. Climate Dynamics 31, (2008). 16.Google Scholar
Kowalczk, A., and Froelich, P.N. Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe?. Earth Planetary Science Letters 289, (2010). 209219.CrossRefGoogle Scholar
Li, H.-C., Bischoff, J.L., Ku, T.-L., and Zhu, Z.-Y. Climate and hydrology of the Last Interglaciation (MIS 5) in Owens Basin, California: isotopic and geochemical evidence from core OL-92. Quaternary Science Reviews 23, (2004). 4963.Google Scholar
Li, C., Battisti, D.S., Schrag, D.P., and Tziperman, E. Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophysical Research Letters 32, (2005). L19702 http://dx.doi.org/10.1029/2005GL023492 Google Scholar
Lisiecki, L.E., and Raymo, M.E. Diachronous benthic δ18O responses during late Pleistocene terminations. Paleoceangraphy 24, (2009). http://dx.doi.org/10.1029/2009PA001732 Google Scholar
Liu, D., Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Wang, X., Hardt, B., Wu, J., Chen, S., Jiang, X., He, Y., Dong, J., and Zhao, K. Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations. Quaternary Science Reviews 29, (2010). 11071115.Google Scholar
Lorens, R.B. Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochimica et Cosmochimica Acta 45, (1981). 553561.Google Scholar
Ludwig, K.R., Wallace, A.R., and Simmons, K.R. The Schwartzwalder uranium deposit, II: age of uranium mineralization and Pb-isotope constraints on genesis. Economic Geology 80, (1985). 18581871.Google Scholar
Mattey, D.P., Fairchild, I.J., Atkinson, T.C., Latin, J.-P., Ainsworth, M., and Durell, R. Seasonal microclimate control of calcite fabrics, stable isotope, and trace elements in modern speleothem from St. Michaels Cave, Gibraltar. Geological Society of London, Special Publication 336, (2010). 323344.Google Scholar
McCabe-Glynn, S., Johnson, K.R., Strong, C., Berkelhammer, M., Sinha, A., Cheng, H., and Edwards, R.L. Variable North Pacific influence on drought in southwestern North America since AD 854. Nature Geoscience 6, (2013). 617621.Google Scholar
McDermott, F. Palaeo-climate reconstruction from stable isotope variation in speleothems: a review. Quaternary Science Reviews 23, (2004). 901918.Google Scholar
McEachern, J.M., and Grady, M.A. An inventory and evaluation of the cave resources to be impacted by the New Melones Reservoir Project, Calaveras and Tuolumne Counties, California. Final Report Submitted to the Sacramento District Office of the U.S. Army Corps of Engineers in compliance with Contract DACW05-77-C00038. (1978). (102 pp.)Google Scholar
McGee, D., Quade, J., Edwards, R.L., Broecker, W.S., Cheng, H., Reiners, P.W., and Evenson, N. Lacustrine cave carbonates: novel archives of paleohydrologic change in the Bonneville Basin (Utah, USA). Earth and Planetary Science Letters 351–352, (2012). 182194.CrossRefGoogle Scholar
Members, C.O.H.M.A.P. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, (1988). 10431052.Google Scholar
Mertz-Kraus, R., Sharp, W.D., and Ludwig, K.R. Precise and accurate measurement of U and Th isotopes via ICP-MS using a single solution. Geophysical Research Abstracts 14, (2012). (EGU2012-6342, EGU General Assembly 2012) Google Scholar
Mickler, P.J., Banner, J.L., Stern, L., Asmerom, Y., Edwards, R.L., and Ito, E. Stable isotope variations in modern tropical speleothems: evaluating equilibrium vs. kinetic isotope effects. Geochimica et Cosmochimica Acta 68, (2004). 43814393.Google Scholar
Mickler, P.J., Stern, L.A., and Banner, J.L. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin 118, (2006). 6581.CrossRefGoogle Scholar
Munroe, J.S., and Laabs, B.J.C. Temporal correspondence between pluvial lake highstands in the southwestern US and Heinrich Event 1. Journal of Quaternary Science 28, (2013). 4958.Google Scholar
North Greenland Ice Core Project members High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, (2004). 147151.Google Scholar
Okumura, Y.M., Deser, C., Hu, A., Timmermann, A., and Xie, S.-P. North Pacific climate response to freshwater forcing in the subarctic North Atlantic: oceanic and atmospheric pathways. Journal of Climate 22, (2009). 14241445.Google Scholar
Orchard, V.A., and Cook, F.J. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry 15, (1983). 447453.Google Scholar
Oster, J.L., Montañez, I.P., Sharp, W.D., and Cooper, K.M. Late Pleistocene California droughts during deglaciation and Arctic warming. Earth and Planetary Science Letters 288, (2009). 434443.Google Scholar
Oster, J.L., Montañez, I.P., Sharp, W.D., Guilderson, T.P., and Banner, J.L. Modeling speleothem δ13C variability in a Central Sierra Nevada Cave using 14C and 87Sr/86Sr. Geochimica et Cosmochimica Acta 74, (2010). 52285524.Google Scholar
Oster, J.L., Montañez, I.P., and Kelley, N.P. Response of a modern cave system to large seasonal precipitation variability. Geochimica et Cosmochimica Acta 91, (2012). 92108.Google Scholar
Palmer, M.R., and Edmond, J.M. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters 92, (1989). 1126.Google Scholar
Pausata, F.S.R., Battisti, D.S., Nisancioglu, K.H., and Bitz, C.M. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience 4, (2011). 474480.Google Scholar
Peterson, L.C., and Haug, G.H. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 234, (2006). 97113.Google Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., and Röhl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. Science 290, (2000). 19471951.Google Scholar
Quade, J., Cerling, T.E., and Bowman, J.R. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geological Society of America Bulletin 101, (1989). 464475.Google Scholar
Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Processes in Geophysics 18, (2011). 389404.CrossRefGoogle Scholar
Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casala, P., Cheng, Y., Grunzweig, J.M., Irvine, J., Joffre, R., Law, B.E., Loustau, D., Miglietta, F., Oechel, W., Ourcival, J.-M., Pereira, J.S., Peressotti, A., Ponti, F., Qi, Y., Rambal, S., Rayment, M., Romanya, J., Rossi, F., Tedeschi, V., Tirone, G., Xu, M., and Yakir, D. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles 17, (2003). http://dx.doi.org/10.1029/2003GB002035 Google Scholar
Roberts, M.S., Smart, P.L., and Baker, A. Annual trace element variations in a Holocene speleothems. Earth and Planetary Science Letters 154, (1998). 237246.Google Scholar
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. Isotopic patterns in modern global precipitation. Swart, P.K. et al. Climate change in continental isotope records: American Geophysical Union Monographs. (1993). 13.Google Scholar
Scholz, D., and Hoffmann, D.L. StalAge—an algorithm designed for construction of speleothem age models. Quaternary Geochronology 6, (2011). 369382.Google Scholar
Scholz, D., Hoffmann, D.L., Hellstrom, J., and Ramsey, C.B. A comparison of different methods for speleothem age modeling. Quaternary Geochronology 14, (2012). 94104.Google Scholar
Sewall, J.O., and Sloan, L.C. Disappearing Arctic sea ice reduces available water in the American west. Geophysical Research Letters 31, (2004). http://dx.doi.org/10.1029/2003GL019133 Google Scholar
Sheather, S.J., and Jones, M.C. A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society B 53, (1991). 683690.Google Scholar
Siddall, M., Rohling, E.J., Thompson, W.G., and Waelbroeck, C. Marine Isotope Stage 3 sea level fluctuations: data synthesis and new outlook. Reviews in Geophysics 46, (2008). RG4003 http://dx.doi.org/10.1029/2007RG000226 Google Scholar
Singarayer, J.S., Bamber, J.L., and Valdes, P.J. Twenty-first-century impacts from a declining Arctic sea ice cover. Journal of Climate 19, (2006). 11091125.Google Scholar
Sonderegger, D. SiZer: Significant Zero Crossings. R package version 0.1-4. (2011). (http://CRAN.R-project.org/package=SiZer)Google Scholar
Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S.J., Jouzel, J., Masson-Delmotte, V., Popp, T., Rasmussen, S.O., Röthlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.-L., Sveinbjörnsdóttir, A., Svensson, A., and White, J.W.C. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, (2008). 680684.Google Scholar
Stuiver, M., and Grootes, P.M. GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277284.Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R., Seierstad, I., Steffensen, J.P., and Vinther, B.M. A 60,000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, (2008). 4757.CrossRefGoogle Scholar
Terhune, C.L., and Harden, J.W. Seasonal variations of carbon dioxide concentrations in stony, coarse-textured desert soils of southern Nevada, USA. Soil Science 151, (1991). 417429.Google Scholar
USGS United States Geological Survey Preliminary Certificate of Analysis. Microanalytical Carbonate Standard, MACS-3. (2010). Google Scholar
Van Meerbeeck, C.J., Renssen, H., and Roche, D.M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Climate of the Past 5, (2009). 3351.Google Scholar
Vellinga, M., and Wood, R.A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climate Change 54, (2002). 251267.Google Scholar
Voelker, A.H.L. workshop participants Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, (2002). 11851212.Google Scholar
Wagner, J.D.M., Cole, J.E., Beck, J.W., Patchett, P.J., Henderson, G.M., and Barnett, H.R. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nature Geoscience 3, (2010). 110113.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., and Dorale, J.A. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.CrossRefGoogle ScholarPubMed
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., and Shen, C.-C. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, (2004). 740743.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y., Kong, X., and Solheid, M. Millennal-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34, (2007). http://dx.doi.org/10.1029/2007GL031149 Google Scholar
Winograd, I.J., Landwehr, J.M., Coplen, T.B., Sharp, W.D., Riggs, A.C., Ludwig, K.R., and Kolesar, P.T. Devils Hole, Nevada, δ18O record extended to the mid-Holocene. Quaternary Research 66, (2006). 202212.Google Scholar
Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O., and Svensson, A. Millennial-scale variability during the last glacial: the ice core record. Quaternary Science Reviews 29, (2010). 28282838.Google Scholar
Zhang, R., and Delworth, T.L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate 18, (2005). 18531860.Google Scholar
Zimmerman, S.H., Hemming, S.R., Kent, D.B., and Searle, S.Y. Revised chronology for late Pleistocene Mono Lake sediments based on paleointensity correlation to the global reference curve. Earth and Planetary Science Letters 252, (2006). 94106.Google Scholar
Supplementary material: PDF

Oster et al. supplementary material

Figure S1

Download Oster et al. supplementary material(PDF)
PDF 90.6 KB
Supplementary material: PDF

Oster et al. supplementary material

Figure S2

Download Oster et al. supplementary material(PDF)
PDF 2.6 MB