Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T03:00:45.804Z Has data issue: false hasContentIssue false

MIS 7 interglacial sea-surface temperature and salinity reconstructions from a southwestern subtropical Pacific coral

Published online by Cambridge University Press:  20 January 2017

Ryuji Asami*
Affiliation:
Trans-disciplinary Research Organization for Subtropical Island Studies (TRO-SIS), University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan Faculty of Science, Department of Physics and Earth Sciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
Yasufumi Iryu
Affiliation:
Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
Kimio Hanawa
Affiliation:
Physical Oceanography Laboratory, Department of Geophysics, Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
Takashi Miwa
Affiliation:
Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
Peter Holden
Affiliation:
Research School of Earth Sciences, The Australian National University, Bldg 61, Mills Road, Acton, ACT 0200, Australia
Ryuichi Shinjo
Affiliation:
Faculty of Science, Department of Physics and Earth Sciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
Gustav Paulay
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
*
*Corresponding author at: Faculty of Science, Department of Physics and Earth Sciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan. Fax: + 81 98 895 8552. E-mail address:asami@sci.u-ryukyu.ac.jp (R. Asami).

Abstract

We generated a 5.5-yr snapshot of biweekly-to-monthly resolved time series of carbon and oxygen isotope composition (δ13C and δ18O) and Sr/Ca and Mg/Ca from annually banded aragonite skeleton of a ~ 197 ka pristine Porites coral collected at Niue Island (19°00′S, 169°50′W) in the southwestern subtropical Pacific Ocean. This report is the first of a high-resolution coral-based paleoclimate archive during the Marine Isotope Stage (MIS) 7 interglacial. Statistical results suggest that annual averages of sea-surface temperature (SST) and salinity (SSS) at ~ 197 ka were not significantly different from and ~ 1.2 higher than at present, respectively. Monthly mean variations showed increased SSS at ~ 197 ka that was higher (1.4–1.9 relative to today) in the austral summer than in the austral winter. Monthly SST and SSS anomalies at ~ 197 ka indicated smaller amplitudes by ~ 0.3°C (11%) and ~ 0.3 (24%) relative to the present, possibly suggesting less influence of interannual climate variability around Niue. Our results, taken together with other climate proxy records, imply seasonal and interannual modulation of thermal and hydrological conditions, different from today, in the southwestern subtropical Pacific Ocean associated with the Western Pacific Warm Pool and the South Pacific Convergence Zone variability during the MIS 7 interglacial.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P., Goldstein, S.L., Wheeler, C.W., Jacobson, G., (1993). Sea-level events in the South Pacific linked with the Messinian salinity crisis. Geology 21, 771775.Google Scholar
Alibert, C., McCulloch, M.T., (1997). Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12, 345363.Google Scholar
Allison, N., Tudhope, A.W., Fallick, A.E., (1996). Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand. Coral Reefs 15, 4357.Google Scholar
Asami, R., Yamada, T., Iryu, Y., Meyer, C.P., Quinn, T.M., Paulay, G., (2004). Carbon and oxygen isotopic composition of a Guam coral and their relationships to environmental variables in the western Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 212, 122.CrossRefGoogle Scholar
Asami, R., Yamada, T., Iryu, Y., Quinn, T.M., Meyer, C.P., Paulay, G., (2005). Interannual and decadal variability of the western Pacific sea surface condition for the 1787–2000: year reconstruction based on stable isotope record from a Guam coral. Journal of Geophysical Research 110, C5 C05018 10.1029/2004JC002555.Google Scholar
Asami, R., Felis, T., Deschamps, P., Hanawa, K., Iryu, Y., Bard, E., Durand, N., Murayama, M., (2009). Evidence for tropical South Pacific climate change during the Younger Dryas and the Bølling–Allerød from geochemical records of fossil Tahiti corals. Earth and Planetary Science Letters 288, 96107.CrossRefGoogle Scholar
Ayling, B.F., McCulloch, M.T., Gagan, M.K., Stirling, C.H., Andersen, M.B., Blake, S.G., (2006). Sr/Ca and δ18O seasonality in a Porites coral from the MIS 9 (339–303 ka) interglacial. Earth and Planetary Science Letters 248, 462475.CrossRefGoogle Scholar
Barrie, J., (1992). Niue Minerals Project: Avian Mining Pty. Report, not paginated. Google Scholar
Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., Henin, C., (1992). Sea-surface temperature for coral skeletal strontium/calcium ratios. Science 257, 644647.Google Scholar
Beck, J.W., Recy, J., Taylor, F., Edwards, R.L., Cabioch, G., (1997). Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature 385, 705707.Google Scholar
Berger, A., (1978). Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences 35, 12 23622367.Google Scholar
Briffa, K.R., (2000). Annual climate variability in the Holocene: interpreting the message from ancient trees. Quaternary Science Reviews 19, 87105.CrossRefGoogle Scholar
Broecker, W.S., Peng, T.-H., (1982). Tracers in the Sea. Lamont-Doherty Geological Observatory, Palisades, New York.(691 pp.).Google Scholar
Cohen, A.L., Hart, S.R., (2004). Deglacial sea surface temperatures of the western tropical Pacific: a new look at old coral. Paleoceanography 19, PA4031 10.1029/2004PA001084.CrossRefGoogle Scholar
Conkright, M.E., Locarnini, R.A., Garcia, H.E., O'Brien, T.D., Boyer, T.P., Stephens, C., Antonov, J.I., (2002). World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation. NODC Internal Report, 17. National Oceanographic Data Center, Silver Spring, MD.(17 pp.).Google Scholar
Corrège, T., (2006). Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 408428.Google Scholar
Corrège, T., Delcroix, T., Récy, J., Beck, W., Cabioch, G., Le Cornec, F., (2000). Evidence for stronger El Niño–Southern Oscillation (ENSO) events in a mid-Holocene massive coral. Paleoceanography 15, 4 465470.Google Scholar
Corrège, T., Gagan, M.K., Beck, J.W., Burr, G.S., Cabioch, G., Le Cornec, F., (2004). Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dryas event. Nature 428, 927929.CrossRefGoogle ScholarPubMed
Craig, H., Gordon, L.I., (1965). Isotopic oceanography: deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Schink, D.R., Corless, J.T. Marine Geochemistry. University of Rhode Island, Kingston, R.I..227374.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
de Villiers, S., Shen, G.T., Nelson, B.K., (1994). The Sr/Ca-temperature relationship in coralline aragonite: influence of variability in (Sr/Ca) seawater and skeletal growth parameters. Geochimica et Cosmochimica Acta 58, 197208.Google Scholar
DeLong, K.L., Quinn, T.M., Taylor, F.W., (2007). Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: a replication study using multiple coral Sr/Ca records from New Caledonia. Paleoceanography 22, PA4212 10.1029/2007PA001444.Google Scholar
DeLong, K.L., Quinn, T.M., Shen, C.-C., Lin, K., (2010). A snapshot of climate variability at Tahiti at 9.5 ka using a fossil coral from IODP expedition 310. Geochemistry, Geophysics, Geosystems 11, Q06005 10.1029/2009GC002758.Google Scholar
DeLong, K.L., Quinn, T.M., Taylor, F.W., Shen, C.-C., Lin, K., (2013). Improving coral-base paleoclimate reconstructions by replicating 350 years of coral Sr/Ca variations. Palaeogeography, Palaeoclimatology, Palaeoecology 373, 624.Google Scholar
Dubois, J., Launay, J., Recy, J., (1975). Some new evidence on lithospheric bulges close to island arcs. Tectonophysics 26, 189196.Google Scholar
Enmar, R., Stein, M., Bar-Matthews, M., Sass, E., Katz, A., Lazar, B., (2000). Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochimica et Cosmochimica Acta 64, 31233132.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H., Urey, H.C., (1953). Revised carbonate-water isotopic temperature scales. Geological Society of America Bulletin 64, 13151326.CrossRefGoogle Scholar
Erez, J., (1978). Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273, 199202.CrossRefGoogle Scholar
Fairbanks, R.G., Dodge, R.E., (1979). Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis . Geochimica et Cosmochimica Acta 43, 10091020.Google Scholar
Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., Mortlock, R.A., Broad, K., Moore, M.D., Charles, C.D., (1997). Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16, S93S100.CrossRefGoogle Scholar
Fairchild, I.J., Killawee, J.A., (1995). Selective leaching in glacierized terrains and implications for retention of primary chemical signals in carbonate rocks, in water–rock interaction. Proceedings of the 8th International Symposium on Water–Rock Interaction, Balkema, A.A., Rotterdam, Netherlands. 7982.Google Scholar
Fallon, S.J., McCulloch, M.T., Alubert, C., (2003). Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22, 389404.Google Scholar
Felis, T., Pätzold, J., Loya, Y., (2003). Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects. Coral Reefs 22, 328336.CrossRefGoogle Scholar
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz, D., Pätzold, J., Al-Rousan, S.A., Al-Moghrabi, S.M., (2004). Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429, 6988 164168.Google Scholar
Felis, T., Suzuki, A., Kuhnert, H., Dima, M., Lohmann, G., Kawahata, H., (2009). Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean. Geology 37, 527530.CrossRefGoogle Scholar
Felis, T., Merkel, U., Asami, R., Deschamps, P., Hathorne, E.C., Kolling, M., Bard, E., Cabioch, G., Durand, N., Prang, M., Schulz, M., Cahyarini, S.Y., Pfeiffer, M., (2012). Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1. Nature Communications 3, 965 10.1038/ncomms1973.Google Scholar
Forbes, D.L., (1996). Coastal Geology and Hazards of Niue, South Pacific Applied Geoscience Commission. Technical Report 233, Suva (Fiji). (100 pp.).Google Scholar
Friedman, I., O'Neil, J.R., ('Neil, 1977). Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geological Survey Professional Paper 440, KK1KK9.Google Scholar
Gagan, M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., Head, M.J., (1998). Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279, 10141018.Google Scholar
Gagan, M.K., Ayliffe, L.K., Beck, J.W., Cole, J.E., Druffel, E.R.M., Dunbar, R.B., Schrag, D.P., (2000). New views of tropical paleoclimates from corals. Quaternary Science Reviews 19, 4564.Google Scholar
Gagan, M.K., Hendy, E.J., Haberle, S.G., Hantoro, W.S., (2004). Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño–Southern Oscillation. Quaternary International 118"119, 127143.CrossRefGoogle Scholar
Gagan, M.K., Dunbar, G.B., Suzuki, A., (2012). The effect of skeletal mass accumulation in Porites on coral Sr/Ca and δ18O paleothermometry. Paleoceanography 27, PA1203 10.1029/2011PA002215.Google Scholar
Gouriou, Y., Delcroix, T., (2002). Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000. Journal of Geophysical Research 107, C12 3185 10.1029/2001JC000830.Google Scholar
Hastings, D.W., Russell, A.D., Emerson, S.R., (1998). Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy. Paleoceanography 13, 2 161169.Google Scholar
Hathorne, E.C., Felis, T., James, R.H., Thomas, A., (2011). Laser ablation ICP-MS screening of corals for diagenetically affected areas applied to Tahiti corals from the last deglaciation. Geochimica et Cosmochimica Acta 75, 14901506.Google Scholar
Hays, J.D., Imbrie, J., Shackleton, N.J., (1976). Variations in the Earth's orbit: pacemaker of ice ages. Science 194, 11211132.Google Scholar
Hendy, E.J., Gagan, M.K., Lough, J.M., McCulloch, M., deMenocal, P.B., (2007). Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals. Paleoceanography 22, PA4101 10.1029/2007PA001462.Google Scholar
Hill, P.J., (1983). Volcanic core of Niue Island, southwest Pacific Ocean. BMR Journal of Australian Geology and Geophysics 8, 323328.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A., Morley, J.J., Pisias, N.G., Prell, W., Shackleton, N.J., (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Berger, A. Milankovitch and Climate. Reidel, D, Norwell, Mass.269305.Google Scholar
Inoue, M., Suzuki, A., Nohara, M., Hibino, K., Kawahata, H., (2007). Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperatures. Geophysical Research Letters 34, L12611 10.1029/2007GL029628.Google Scholar
Juillet-Leclerc, A., Thiria, S., Naveau, P., Delcroix, T., Le Bec, N., Blamart, D., Corrège, T., (2006). SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral. Geophysical Research Letters 33, L17710 10.1029/2006GL025950.Google Scholar
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J.P., Hutterli, M.A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M.E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., Watanabe, O., (2007). Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912916.CrossRefGoogle Scholar
Kilbourne, K.H., Quinn, T.M., Taylor, F.W., (2004a). A fossil coral perspective on western tropical Pacific climate 350 ka. Paleoceanography 19, PA1019 10.1029/2003PA000944.Google Scholar
Kilbourne, K.H., Quinn, T.M., Taylor, F.W., Delcroix, T., Gouriou, Y., (2004b). El Niño–Southern Oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites coral from Espiritu Santo, Vanuatu. Paleoceanography 19, PA4002 10.1029/2004PA001033.Google Scholar
Kinsman, D.J.J., Holland, H.D., (1969). The coprecipitation of cations with CaCO 3 : IV. The coprecipitation of Sr2 + with aragonite between 16° and 96°C. Geochimica et Cosmochimica Acta 33, 117.CrossRefGoogle Scholar
Le Bec, N., Juillet-Leclerc, A., Corrège, T., Blamart, D., Delcroix, T., (2000). A coral δ18O record of ENSO driven seas surface salinity variability in Fiji (south-western tropical Pacific). Geophysical Research Letters 27, 23 38973900.CrossRefGoogle Scholar
Lea, D.W., Pak, D.K., Spero, H.J., (2000). Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 17191724.Google Scholar
LeGrande, A.N., Schmidt, G.A., (2006). Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters 33, L12604 10.1029/2006GL026011.Google Scholar
Lisiecki, L.E., Raymo, M.E., (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 10.1029/2004PA001071.Google Scholar
Lu, G., Aharon, P., Wheeler, C.W., McCabe, C., (1996). Magnetostratigraphy of the uplifted former atoll of Niue, South Pacific: implications for accretion history and carbonate diagenesis. Sedimentary Geology 105, 259274.Google Scholar
Lundstrom, C.C., Gill, J., Williams, Q., Hanan, B.B., (1998). Investigating solid mantle upwelling beneath mid-ocean ridges using U-series disequilibria. II. A local study at 33°S Mid-Atlantic Ridge. Earth and Planetary Science Letters 157, 167181.Google Scholar
Maier, C., Felis, T., Pätzold, J., Bak, R.P.M., (2004). Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites . Marine Geology 207, 193208.CrossRefGoogle Scholar
Martin, P.A., Lea, D.W., Mashiotta, T.A., Papenfuss, T., Sarnthein, M., (1999). Variation of foraminiferal Sr/Ca over Quaternary glacial–interglacial cycles: evidence for changes in mean ocean Sr/Ca?. Geochemistry, Geophysics, Geosystems 1, 10.1029/1999GC000006.Google Scholar
McConnaughey, T., (1989). 13C and 18O isotopic disequilibrium in biologic carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53, 151162.Google Scholar
McCulloch, M.T., Gagan, M.K., Mortimer, G.E., Chivas, A.R., Isdale, P.J., (1994). A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochimica et Cosmochimica Acta 58, 27472754.Google Scholar
McCulloch, M.T., Mortimer, G., Esat, T., Xianhua, L., Pillans, B., Chappell, J., (1996). High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula. Earth and Planetary Science Letters 138, 169178.Google Scholar
McDermott, F., (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, 901918.Google Scholar
McGregor, H.V., Gagan, M.K., (2004). Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation. Geophysical Research Letters 31, L11204 10.1029/2004GL019972.Google Scholar
Meehl, G.A., (1987). The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Monthly Weather Review 115, 2750.Google Scholar
Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., Isdale, P.J., (1996). Mg/Ca thermometry in coral skeletons. Science 274, 961963.Google Scholar
Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., Yoshida, N., (2002). Salinity records for the 1997–98 El Niño from Western Pacific corals. Geophysical Research Letters 29, 11 1540 10.1029/2001GL013521.Google Scholar
Morimoto, M., Kayanne, H., Abe, O., McCulloch, M., (2007). Intensified mid-Holocene Asian monsoon recorded in corals from Kikai Island, subtropical northwestern Pacific. Quaternary Research 67, 204214.Google Scholar
Müller, A., Gagan, M.K., McCulloch, M., (2001). Early marine diagenesis in corals and geochemical consequences for paleoceanographic reconstructions. Geophysical Research Letters 28, 44714474.Google Scholar
Okai, T., Suzuki, A., Kawahata, H., Terashima, S., Imai, N., (2002). Preparation of a new Geological Survey of Japan geochemical reference material: coral JCp-1. Geostandards Newsletter 26, 9599.Google Scholar
"stlund, H.G., Craig, H., Broecker, W.S., Spenser, D., (1987). GEOSECS Atlantic, Pacific, and Indian Ocean Expeditions, in Shorebased Data and Graphics. vol. 7, National Science Found, Washington, D.C..200.Google Scholar
Paillard, D., Labeyrie, L., Yiou, P., (1996). Macintosh program performs time-series analysis. Eos Transactions AGU 77, 379.Google Scholar
Paulay, G., Spencer, T., (1992). Niue Island: geologic and faunistic history of a Pliocene atoll. Pacific Science Association Information Bulletin 44, 2123.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzmank, E., Stievenard, M., (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Quinn, T.M., Sampson, D.E., (2002). A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17, 4 1062 10.1029/2000PA000528.Google Scholar
Quinn, T.M., Taylor, F.W., (2006). SST artifacts in coral proxy records produced by early marine diagenesis in a modern coral from Rabaul, Papua New Guinea. Geophysical Research Letters 33, L04601 10.1029/2005GL024972.Google Scholar
Quinn, T.M., Crowley, T.J., Taylor, F.W., Hénin, C., Joannot, P., Join, Y., (1998). A multicentury stable isotope record from a New Caledonia coral: interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D.. Paleoceanography 13, 4 412426.Google Scholar
Quinn, T.M., Taylor, F.W., Crowley, T.J., (2006). Coral-based climate variability in the Western Pacific Warm Pool since 1867. Journal of Geophysical Research 111, C11006 10.1029/2005JC003243.Google Scholar
Reynaud, S., Ferrier-Pagès, C., Meibom, A., Mostefaoui, S., Mortlock, R., Fairbanks, R., Allemand, D., (2007). Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochimica et Cosmochimica Acta 71, 354362.Google Scholar
Schofield, J.C., (1959). The geology and hydrology of Niue Island, South Pacific. New Zealand Geological Survey Bulletin 62, (28 pp.).Google Scholar
Schrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D., McManus, J.F., (2002). The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quaternary Science Reviews 21, 331342.Google Scholar
Schroeder, J.H., (1969). Experimental dissolution of calcium, magnesium, and strontium from recent biogenic carbonates: a model for diagenesis. Journal of Sedimentary Petrology 39, 10571073.Google Scholar
Shackleton, N.J., (2000). The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity. Science 289, 18971902.Google Scholar
Shen, C.-C., Lee, T., Chen, C.-Y., Wang, C.-H., Dai, C.-F., Li, L.-A., (1996). The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochimica et Cosmochimica Acta 60, 38493858.Google Scholar
Shimamura, M., Oba, T., Xu, G., Lu, B., Wang, L., Murayama, M., Toyoda, K., Winter, A., (2005). Fidelity of δ18O as a proxy for sea surface temperature: influence of variable coral growth rates on the coral Porites lutea from Hainan Island, China. Geochemistry, Geophysics, Geosystems 6, Q09017 10.1029/2005GC000966.Google Scholar
Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, Ch., Meischner, D., Schmelzer, I., Smeed, D.A., (2003). Sea-level fluctuations during the last glacial cycle. Nature 423, 853858.Google Scholar
Smith, S.V., Buddemeier, R.W., Redalje, R.C., Houck, J.E., (1979). Strontium"calcium thermometry in coral skeletons. Science 204, 404407.Google Scholar
Stephans, C.L., Quinn, T.M., Taylor, F.W., Corrège, T., (2004). Assessing the reproducibility of coral-based climate records. Geophysical Research Letters 31, L18210 10.1029/2004GL020343.Google Scholar
Stoll, H.M., Schrag, D.P., (1998). Effects of Quaternary sea-level cycles on strontium in seawater. Geochimica et Cosmochimica Acta 62, 7 11071118.CrossRefGoogle Scholar
Stoll, H.M., Schrag, D.P., Clemens, S.C., (1999). Are seawater Sr/Ca variations preserved in Quaternary foraminifera?. Geochimica et Cosmochimica Acta 63, 21 35353547.Google Scholar
Suzuki, A., Hibino, K., Iwase, A., Kawahata, H., (2005). Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: temperature-controlled experiments. Geochimica et Cosmochimica Acta 69, 44534462.Google Scholar
Swart, P.K., (1983). Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Science Reviews 19, 5180.Google Scholar
Swart, P.K., Leder, J.J., Dodge, R.E., (1996). The origin of variations in the isotopic record of scleractinian corals: II. Carbon. Geochimica et Cosmochimica Acta 60, 28712885.Google Scholar
Trenberth, K.E., (1976). Spatial and temporal variations of the southern oscillation. Quarterly Journal of the Royal Meteorological Society 102, 639653.Google Scholar
Tudhope, A.W., Shimmield, G.B., Chilcott, C.P., Jebb, M., Fallick, A.E., Dalgleish, A.N., (1995). Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation: oxygen isotope records from massive corals, Papua New Guinea. Earth and Planetary Science Letters 136, 575590.Google Scholar
Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., Shimmield, G.B., (2001). Variability in the El Niño–Southern Oscillation through a glacial–interglacial cycle. Science 291, 15111517.Google Scholar
Tzedakis, P.C., Roucoux, K.H., De Abreu, L., Shackleton, N.J., (2004). The duration of forest stages in southern Europe and interglacial climate variability. Science 306, 22312235.Google Scholar
Uemura, R., Masson-Delmotte, V., Jouzel, J., Landais, A., Motoyama, H., Stenni, B., (2012). Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles. Climate of the Past 8, 11091125.CrossRefGoogle Scholar
Vincent, D.G., (1994). The South Pacific Convergence Zone (SPCZ): a review. Monthly Weather Review 122, 19491970.Google Scholar
Watanabe, T., Suzuki, A., Minobe, S., Kawashima, T., Kameo, K., Minoshima, K., Aguilar, Y.M., Wani, R., Kawahata, H., Sowa, K., Nagai, T., Kase, T., (2011). Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471, 209211.Google Scholar
Weber, J.N., Woodhead, P.M., (1970). Carbon and oxygen isotope fractionation in the skeletal carbonate of reef-building corals. Chemical Geology 6, 93117.Google Scholar
Weber, J.N., Woodhead, P.M.J., (1972). Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research 77, 463473.Google Scholar
Wei, G., Sun, M., Li, X., Nie, B., (2000). Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 5974.Google Scholar
Wheeler, C.W., Aharon, P., (1991). Mid-oceanic carbonate platforms as oceanic dipsticks: examples from the Pacific. Coral Reefs 2, 101114.Google Scholar
Wheeler, C.W., Aharon, P., (1997). Geology and hydrogeology of Niue. Vacher, H.L., Quinn, T. Geology and Hydrology of Carbonate Islands (Dev. Sedimentol. 54). Elsevier, Amsterdam.537564.Google Scholar
Winter, A., Goenaga, C., Maul, G.A., (1991). Carbon and oxygen isotope time series from an 18 year Caribbean reef coral. Journal of Geophysical Research 96, 1667316678.Google Scholar
Woodroffe, C.D., Beech, M.R., Gagan, M.K., (2003). Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls. Geophysical Research Letters 30, 7 1358 10.1029/2002GL015868.Google Scholar
Xie, P., Arkin, P.A., (1997). Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society 78, 11 25392558.Google Scholar