Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T16:09:03.896Z Has data issue: false hasContentIssue false

Modern pollen-vegetation relationships along a steep temperature gradient in the Tropical Andes of Ecuador

Published online by Cambridge University Press:  15 March 2019

Kimberley Hagemans*
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
Claudia-Dana Tóth
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
Manuela Ormaza
Affiliation:
Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Avenida 12 de octubre 1076 y Roca, Quito, Ecuador
William D. Gosling
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
Dunia H. Urrego
Affiliation:
Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive EX4 4RJ, Exeter, United Kingdom
Susana León-Yánez
Affiliation:
Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Avenida 12 de octubre 1076 y Roca, Quito, Ecuador
Friederike Wagner-Cremer
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
Timme H. Donders
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
*
*Corresponding author e-mail address: K.Hagemans@uu.nl.

Abstract

The characterization of modern pollen rain assemblages along environmental gradients is an essential prerequisite for reliable interpretations of fossil pollen records. In this study, we identify pollen-vegetation relationships using modern pollen rain assemblages in moss polsters (n = 13) and lake sediment surface samples (n = 11) along a steep temperature gradient of 7°C (3100–4200 m above sea level) on the western Andean Cordillera, Ecuador. The pollen rain is correlated to vascular plant abundance data recorded in vegetation relevées (n = 13). Results show that pollen spectra from both moss polsters and sediment surface samples reflect changes in species composition along the temperature gradient, despite overrepresentation of upper montane forest taxa in the latter. Estimated pollen transport distance for a lake (Laguna Llaviucu) situated in a steep upper montane forest valley is 1–2 km, while a lake (Laguna Pallcacocha) in the páramo captures pollen input from a distance of up to 10–40 km. Weinmannia spp., Podocarpus spp., and Hedyosmum sp. are indicators of local upper montane forest vegetation, while Phlegmariurus spp. and Plantago spp. are indicators for local páramo vegetation.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakker, J., Moscol-Olivera, M., Hooghiemstra, H., 2008. Holocene environmental change at the upper forest line in northern Ecuador. The Holocene 18, 877893.Google Scholar
Barkman, J.J., Doing, H., Segal, S., 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica Neerlandica 13, 394419.Google Scholar
Birks, H.J.B., Line, J.M., 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2, 110.Google Scholar
Bush, M.B., 1995. Neotropical plant reproductive strategies and fossil pollen representation. American Naturalist 145, 594609.Google Scholar
Bush, M.B., 2000. Deriving response matrices from central American modern pollen rain. Quaternary Research 54, 132143.Google Scholar
Bush, M.B., Rivera, R., 1998. Pollen dispersal and representation in a neotropical rain forest. Global Ecology and Biogeography Letters 7, 379392.Google Scholar
Bush, M.B., Rivera, R., 2001. Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography 10, 359367.10.1046/j.1466-822X.2001.00247.xGoogle Scholar
Bush, M.B., Silman, M.R., Urrego, D.H., 2004. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827829.Google Scholar
Buytaert, W., Celleri, R., Willems, P., De Bièvre, B., Wyseure, G., 2006. Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. Journal of Hydrology 329, 413421.Google Scholar
Cárdenas, M.L., Gosling, W.D., Pennington, R.T., Poole, I., Sherlock, S.C., Mothes, P., 2014. Forests of the tropical eastern Andean flank during the middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 7689.Google Scholar
Cárdenas, M.L., Gosling, W.D., Sherlock, S.C., Poole, I., Pennington, R.T., Mothes, P., 2011. The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change. Science 331, 10551058.Google Scholar
Carrillo-Rojas, G., Silva, B., Córdova, M., Célleri, R., Bendix, J., 2016. Dynamic mapping of evapotranspiration using an energy balance-based model over an Andean páramo catchment of southern Ecuador. Remote Sensing 8.Google Scholar
Cleef, A.M., 1981. The Vegetation of the Páramos of the Colombian Cordillera Oriental. PhD dissertation, Dissertationes Botanica 61. Cramer, Verduz.Google Scholar
Colinvaux, P.A., Bush, M., Steinitz, K., M., Miller, M., 1997. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quaternary Research 48, 8399.Google Scholar
Córdova, M., Célleri, R., Shellito, C.J., Orellana-Alvear, J., Abril, A., Carrillo-Rojas, G., 2016. Near-surface air temperature lapse rate over complex terrain in the southern Ecuadorian Andes: implications for temperature mapping. Arctic, Antarctic, and Alpine Research 48, 678684.Google Scholar
Cuesta, F., Peralvo, M., Merino-Viteri, A., Bustamante, M., Baquero, F., Freile, J.F., Muriel, P., Torres-Carvajal, O., 2017. Priority areas for biodiversity conservation in mainland Ecuador. Neotropical Biodiversity 3, 93106.Google Scholar
Davis, M.B., 1963. On the theory of pollen analysis. American Journal of Science 261, 897912.Google Scholar
Davis, O.K.,1984. Pollen frequencies reflect vegetation patterns in a great basin (U.S.A.) mountain range. Review of Palaeobotany and Palynology 40, 295315.Google Scholar
Environmental Systems Research Institute, 2014. ArcGIS Release 10.3.1. Redlands, CA.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Wiley, Chichester.Google Scholar
Fall, P.L., 1992. Pollen accumulation in a montane region of Colorado, USA: a comparison of moss polsters, atmospheric traps, and natural basins. Review of Palaeobotany and Palynology 72, 169197.Google Scholar
Flantua, S.G.A., Hooghiemstra, H., Vuille, M., Behling, H., Carson, J.F., Gosling, W.D., Hoyos, , et al. , 2016. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Climate of the Past 12, 483523.Google Scholar
Gaudreau, D.C., Jackson, S.T., Webb, T., 1989. Spatial scale and sampling strategy in palaeoecological studies of vegetation patterns in mountainous terrain. Acta Botanica Neerlandica 38, 369390.Google Scholar
Gentry, A.H., 1992. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63, 19.Google Scholar
Gosling, W.D., Julier, A.C.M., Adu-Bredu, S., Djagbletey, G.D., Fraser, W.T., Jardine, P.E., Lomax, B.H., et al. , 2018. Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany 27, 411418.Google Scholar
Grabandt, R.A.J., 1980. Pollen rain in relation to arboreal vegetation in the Colombian Cordillera Oriental. Review of Palaeobotany and Palynology 29, 65147.Google Scholar
Grabandt, R.A.J., 1985. Pollen Rain in Relation to Vegetation in the Colombian Cordillera Oriental. PhD dissertation, Universiteit van Amsterdam, Amsterdam.Google Scholar
Groot, M.H.M., Bogotá, R.G., Lourens, L.J., Hooghiemstra, H., Vriend, M., Berrio, J.C., Tuenter, E., et al. , 2011. Ultra-high resolution pollen records from the northern Andes reveal rapid shifts in montane climates within the last two glacial cycles. Climate of the Past 7, 299316.Google Scholar
Groot, M.H.M., Hooghiemstra, H., Berrio, J.C., Giraldo, C., 2013. North Andean environmental and climatic change at orbital to submillenial time-scales: Vegetation, water levels and sedimentary regimes from Lake Fúquene 130-27ka. Review of Palaeobotany and Palynology, 197, 18204.Google Scholar
Hammer, Ø, Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Hansen, B.C.S., Rodbell, D.T., Seltzer, G.O., León, B., Young, K.R., Abbott, M., 2003. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeography, Palaeoclimatology, and Palaeoecology 194, 79108.Google Scholar
Hellman, S., Gaillard, M.J., Broström, A., Sugita, S., 2008. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. Journal of Quaternary Science 23, 2142.Google Scholar
Hooghiemstra, H., 1984. Vegetational and climatic history of the high plain of Bogotá, Colombia. PhD dissertation, University of Amsterdam, Amsterdam.Google Scholar
Hooghiemstra, H., Van der Hammen, T., 2004. Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society B 359, 173181.Google Scholar
Jansen, B., De Boer, E.J., Cleef, A.M., Hooghiemstra, H., Moscol-Olivera, M., Tonneijck, F.H., Verstraten, J.M., 2013. Reconstruction of late Holocene forest dynamics in northern Ecuador from biomarkers and pollen in soil cores. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 607619.Google Scholar
Jantz, N., Homeier, J., León-Yánez, S., Moscoso, A., Behling, H., 2013. Trapping pollen in the tropics—comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones. Review of Palaeobotany and Palynology 193, 5769.Google Scholar
Juggins, S., 2007. C2 Version 1.5 User guide: Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne.Google Scholar
Ledru, M.-P., Jomelli, V., Samaniego, P., Vuille, M., Hidalgo, S., Herrera, M., Ceron, C., 2012. The Medieval Climate Anomaly and the Little Ice Age in the eastern Ecuadorian Andes. Climate of the Past 8, 42954332.Google Scholar
Liu, K.B., Colinvaux, P.A., 1985. Forest changes in the Amazon Basin during the last glacial maximum. Nature 318, 556557.Google Scholar
Ministerio del Ambiente Ecuador (MAE), 2014. Mapa de cobertura y uso de la tierra del 2014, Sistema Nacional de Monitoreo del Patrimonio Natural, Quito, Ecuador.Google Scholar
Moscol-Olivera, M., Cleef, A.M., 2009. Vegetation composition and altitudinal distribution of Andean rain forests in El Angel and Guandera reserves, northern Ecuador. Phytocoenologia 39, 175204.Google Scholar
Moscol-Olivera, M., Duivenvoorden, J.F., Hooghiemstra, H., 2009. Pollen rain and pollen representation across a forest-páramo ecotone in northern Ecuador. Review of Palaeobotany and Palynology 157, 285300.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.Google Scholar
Muñoz, P., Gorin, G., Parra, N., Velásquez, C., Lemus, D., Monsalve, M.C., Jojoa, M., 2017. Holocene climatic variations in the Western Cordillera of Colombia: a multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews 155, 159178.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853858.Google Scholar
Niemann, H., Brunschön, C., Behling, H., 2010. Vegetation/modern pollen rain relationship along an altitudinal transect between 1920 and 3185 m asl in the Podocarpus National Park region, southeastern Ecuadorian Andes. Reviews of Palaeobotany and Palynology 159, 6980.Google Scholar
Reese, C.A., Liu, K.B., 2005. A modern pollen rain study from the central Andes region of South America. Journal of Biogeography 32, 709718.Google Scholar
Rodbell, D.T., Bagnato, S., Nebolini, J.C., Seltzer, G.O., Abbott, M.B., 2002. A late glacial-Holocene tephrochronology for glacial lakes in southern Ecuador. Quaternary Research 57, 343354.Google Scholar
Rull, V., 2006. A high mountain pollen-altitude calibration set for palaeoclimatic use in the tropical Andes. The Holocene 16, 105117.Google Scholar
Schiferl, J.D., Bush, M.B., Silman, M.R., Urrego, D.H., 2018. Vegetation responses to late Holocene climate changes in an Andean forest. Quaternary Research 89, 6074.Google Scholar
Šmilauer, P., Lepš, J., 2014. Multivariate Analysis of Ecological Data Using Canoco 5. Cambridge University Press, Cambridge.Google Scholar
Smit, A., 1978. Pollen morphology of Polylepis boyacensis cuatrecasas, Acaena cylindristachia ruiz et pavon and Acaena elongata L. (Rosaceae) and its application to fossil material. Review of Palaeobotany and Palynology 25, 393398.Google Scholar
Sugita, S., 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82, 881.Google Scholar
Sugita, S., 2007. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17, 229241.Google Scholar
Ter Braak, C.J.F., Šmilauer, P., 2012. Canoco Reference Manual and User's Guide: Software for Ordination. Microcomputer Power, Ithaca.Google Scholar
Urrego, D.H., Niccum, B.A., La Drew, C.F., Silman, M.R., Bush, M.B., 2011a. Fire and drought as drivers of early Holocene tree line changes in the Peruvian Andes. Journal of Quaternary Science 26, 2836.Google Scholar
Urrego, D.H., Silman, M.R., Bush, M.B., 2005. The last glacial maximum: stability and change in a western Amazonian cloud forest. Journal of Quaternary Science 20, 693701.Google Scholar
Urrego, D.H., Silman, M.R., Correa-Metrio, A., Bush, M.B., 2011b. Pollen-vegetation relationships along steep climatic gradients in western Amazonia. Journal of Vegetation Science 22, 795806.Google Scholar
United States Geological Survey (USGS), 2014. NASA Shuttle Radar Topography Mission (SRTM), Version 3.0., Global 1 arc second, region: South America. USGS, Reston.Google Scholar
Van't Veer, R., Hooghiemstra, H., 2000. Montane forest evolution during the last 650,000 years in Colombia: a multivariate approach based on pollen record Funza-I. Journal of Quaternary Science 15, 329346.Google Scholar
Vuille, M., Bradley, R.S., Keimig, F., 2000. Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. Journal of Climate 13, 25202535.Google Scholar
Weng, C., Bush, M.B., Silman, M.R., 2004. An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology 20, 113124.Google Scholar
Weng, C., Hooghiemstra, H., Duivenvoorden, J.F., 2007. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 253262.Google Scholar
Whitney, B.S., Smallman, T.L., Mitchard, E.T.A., Carson, J.F., Mayle, F.E., Bunting, J.M., 2018. Constraining pollen-based estimates of forest cover in the Amazon: a simulation approach. The Holocene 29, 262270Google Scholar
Wille, M., Hooghiemstra, H., Behling, H., van der Borg, K., Negret, A.J., 2001. Environmental change in the Colombian subAndean forest belt from 8 pollen records: the last 50 kyr. Vegetation History and Archaeobotany 10, 6177.Google Scholar