Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T19:20:27.309Z Has data issue: false hasContentIssue false

A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway

Published online by Cambridge University Press:  20 January 2017

Nicholas L. Balascio*
Affiliation:
Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, MA, 01003, USA
Zhaohui Zhang
Affiliation:
Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, MA, 01003, USA
Raymond S. Bradley
Affiliation:
Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, MA, 01003, USA
Bianca Perren
Affiliation:
Laboratoire Chrono-Environnement, Université de Franche-Comté, 25030 Besançon, France
Svein Olaf Dahl
Affiliation:
Bjerknes Centre for Climate Research, N-5007 Bergen, Norway Department of Geography, University of Bergen, N-5007 Bergen, Norway
Jostein Bakke
Affiliation:
Bjerknes Centre for Climate Research, N-5007 Bergen, Norway Department of Geography, University of Bergen, N-5007 Bergen, Norway
*
Corresponding author.

Abstract

This study takes a comprehensive approach to characterizing the isolation sequence of Heimerdalsvatnet, a coastal lake in the Lofoten Islands, northern Norway. We use established methods and explore new techniques to assess changes in marine influence. Bathymetric and sub-bottom profiles were acquired to examine basin-wide sedimentation and a 5.8 m sediment core spanning the last 7800 cal yr BP was analyzed. We measured magnetic susceptibility, bulk organic matter properties, molecular biomarkers, diatom assemblages, and elemental profiles acquired by scanning X-ray fluorescence. These characteristics of the sediment reflect detailed changes in salinity and water column conditions as the lake was progressively isolated. Three distinct litho/chemo-stratigraphic units represent a restricted marine phase (7800–6500 cal yr BP), a transitional phase characterized by intermittent marine influence (6500–4900 cal yr BP), and complete isolation and freshwater sedimentation (4900 cal yr BP to present). Although there are uncertainties in the estimate of the threshold elevation of the lake, the timing of these phases generally corresponds with previous interpretations of the local relative sea-level history. This record captures sea-level regression following the Tapes transgression and supports the interpretation of a subsequent sea-level stillstand, dated in Heimerdalsvatnet from 6500 to 4900 cal yr BP.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Current address: Department of Earth Sciences, Nanjing University, Nanjing, 210093, China.

References

Alloway, B.V., Larsen, G., Lowe, D.J., Shane, P.A.R., and Westgate, J.A. Tephrochronology. Elias, S.A. Encyclopedia of Quaternary Science. (2006). Elsevier, Oxford. 28692898.Google Scholar
Bargel, T.H., (2003). Quaternary geological mapping of Fennoscandia and Nordland: deglaciation, deposits, stratigraphy and applications. Ph.D. thesis. Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, pp. 324.Google Scholar
Barrick, R.C., Hedges, J.I., and Peterson, M.L. Hydrocarbon geochemistry of the Puget Sound region. 1. Sedimentary acyclic hydrocarbons. Geochim. Cosmochim. Acta 44, (1980). 13491362.CrossRefGoogle Scholar
Bendle, J.A.P., Rosell-Melé, A., Cox, N.J., and Shennan, I. Alkenones, alkenoates and organic matter in coastal environments of N.W. Scotland: assessment of potential application for sea-level reconstruction. Geochem. Geophys. Geosyst. 10, (2009). Q12003 CrossRefGoogle Scholar
Bergström, E. Den prerecenta lokalglaciationens utbredningshistoria inom Skanderna. Naturgeografiska institutionen, University of Stockholm. Forskningsrapport 16, (1973). 214 Google Scholar
Corner, G.D., and Haugane, E. Marine-lacustrine stratigraphy of raised coastal basins and postglacial sea-level change at Lyngen and Vanna, Troms, northern Norway. Nor. Geol. Tidsskr. 73, (1993). 175197.Google Scholar
Corner, G.D., Yevzerov, V.Y., Kolka, V.V., and Møller, J.J. Isolation basin stratigraphy and Holocene relative sea-level change at the Norwegian-Russian border north of Nikel, northwest Russia. Boreas 28, (1999). 146166.CrossRefGoogle Scholar
Corner, G.D., Kolka, V.V., Yevzerov, V.Y., and Møller, J.J. Postglacial relative sea-level change and stratigraphy of raised coastal basins on Kola Peninsula, northwest Russia. Glob. Planet. Change 31, (2001). 155177.CrossRefGoogle Scholar
Croudace, I.W., Rindby, A., and Rothwell, R.G. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Rothwell, R.G. New Techniques in Sediment Core Analysis. Geological Society, London, Special Publications, 267. (2006). 51564.Google Scholar
Davies, S.M., Elmquist, M., Bergman, J., Wohlfarth, B., and Hammarlund, D. Cryptotephra sedimentation processes within two lacustrine sequences from west central Sweden. Holocene 17, (2007). 319330.CrossRefGoogle Scholar
Gearing, P.J., Gearing, J.N., Lytle, T.F., and Lytle, J.S. Hydrocarbons in 60 north east Gulf of Mexico Shelf sediments: a preliminary study. Geochimica et Cosmochim Acta 40, (1976). 10051017.CrossRefGoogle Scholar
Hall, V.A., and Pilcher, J.R. Late-Quaternary Icelandic tephras in Ireland and Great Britain: detection, characterization and usefulness. Holocene 12, (2002). 223230.Google Scholar
Hutchinson, I., James, T.S., Clague, J.J., Barrie, J.V., Conway, K.W., (2004). Reconstruction of late Quaternary sea-level change in southwestern British Columbia from sediments in isolation basins. Boreas, 33, 183194.Google Scholar
Kjemperud, A. Diatom changes in sediments of basins possessing marine/lacustrine transitions in Frosta, Nord-Troendelag, Norway. Boreas 10, (1981). 2738.CrossRefGoogle Scholar
Lamb, A.L., Wilson, G.P., and Leng, M.J. A review of coastal paleoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci. Rev. 75, (2006). 2957.CrossRefGoogle Scholar
Larsen, G., Newton, A.J., Dugmore, A.J., and Vilmundardóttir, E.G. Geochemistry, dispersal, volumes and chronology of Holocene silicic tephra layers from the Katla volcanic system, Iceland. J. Quatern. Sci. 16, (2001). 119132.CrossRefGoogle Scholar
Lloyd, J. Combined foraminiferal and thecamoebian environmental reconstruction from an isolation basin in NW Scotland: implications for sea-level studies. J. Foramin. Res. 30, (2000). 294305.CrossRefGoogle Scholar
Long, A.J., Roberts, D.H., and Wright, M.R. Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland. J. Quatern. Sci. 14, (1999). 323345.3.0.CO;2-0>CrossRefGoogle Scholar
Mackie, E.A.V., Leng, M.J., Lloyd, J.M., and Arrowsmith, C. Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. J. Quatern. Sci. 20, (2005). 303312.CrossRefGoogle Scholar
Mackie, E.A.V., Lloyd, J.M., Leng, M.J., Bentley, M.J., and Arrowsmith, C. Assessment of δ13C and C/N ratios in bulk organic matter as palaeosalinity indicators in Holocene and Lateglacial isolation basin sediments, northwest Scotland. J. Quatern. Sci. 22, (2007). 579591.CrossRefGoogle Scholar
Marthinussen, M. 14C-datings referring to shore lines, transgressions and glacial substages in northern Norway. Nor. Geol. Unders. 215, (1962). 3767.Google Scholar
Meyers, P.A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, (1994). 289302.CrossRefGoogle Scholar
Meyers, P.A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34, (2003). 261289.CrossRefGoogle Scholar
Mills, K., Mackay, A.W., Bradley, R.S., and Finney, B. Diatom and stable isotope records of late-Holocene lake ontogeny at Indrepollen, Lofoten, NW Norway: a response to glacio-isostasy and Neoglacial cooling. Holocene 19, (2009). 261271.CrossRefGoogle Scholar
Møller, J.J. Holocene shore displacement at Nappstraumen, Lofoten, North Norway. Nor. Geol. Tidsskr. 64, (1984). 15.Google Scholar
Møller, J.J. Coastal caves and their relation to early postglacial shore levels in Lofoten and Vesterålen, North Norway. Nor. Geol. Unders. 400, (1985). 5165.Google Scholar
Møller, J.J. Holocene transgression maximum about 6000 years BP at Ramså, Vesterålen, North Norway. Nor. Geogr. Tidsskr. 40, (1986). 7784.CrossRefGoogle Scholar
Møller, J.J. Shoreline relation and prehistoric settlement in northern Norway. Nor. Geogr. Tidsskr. 41, (1987). 4560.CrossRefGoogle Scholar
Møller, J.J. Geometric simulation and mapping of Holocene relative sea-level changes in northern Norway. J. Coast. Res. 5, (1989). 403417.Google Scholar
Pilcher, J.R., Hall, V.A., and McCormac, F.G. An outline tephrochronology for the Holocene of the north of Ireland. J. Quatern. Sci. 11, (1996). 485494.3.0.CO;2-T>CrossRefGoogle Scholar
Pilcher, J., Bradley, R.S., Francus, P., and Anderson, L. A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas 34, (2005). 136156.CrossRefGoogle Scholar
Plunkett, G.M., Pilcher, J.R., McCormac, F.G., and Hall, V.A. New dates for the first millennium BC tephra isochrones in Ireland. Holocene 14, (2004). 780786.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Renberg, I. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolimnol. 4, (1990). 8790.CrossRefGoogle Scholar
Robson, J.N., and Rowland, S.J. Identification of novel widely distributed sedimentary acyclic sesterterpenoids. Nature 324, (1986). 561563.CrossRefGoogle ScholarPubMed
Rowland, S.J., and Robson, J.N. The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota-a review. Mar. Environ. Res. 30, (1990). 191216.CrossRefGoogle Scholar
Rowland, S.J., Yon, D.A., Lewis, C.A., and Maxwell, J.R. Occurrence of 2, 6, 10-trimethyl-7-(3-methylbutyl)-dodecane and related hydrocarbons in the green alga Enteromorpha prolifera and sediments. Org. Geochem. 8, (1985). 207213.CrossRefGoogle Scholar
Shennan, I. Flandrian sea-level changes in the Fenland. II: Tendencies of sea-level movement, altitudinal changes, and local and regional factors. J. Quatern. Sci. 1, (1986). 155179.CrossRefGoogle Scholar
Shennan, I., Innes, J.B., Long, A.J., and Zong, Y. Holocene relative sea-level changes and coastal vegetation history at Kentra Moss, Argyll, northwest Scotland. Marine Geology 124, (1995). 4359.CrossRefGoogle Scholar
Shennan, I., Horton, B., Innes, J., Gehrels, R., Lloyd, L., McArthur, J., and Rutherford, M. Late Quaternary sea-level changes, crustal movements and coastal evolution in Northumberland, UK. J. Quatern. Sci. 15, (2000). 215237.3.0.CO;2-#>CrossRefGoogle Scholar
Sparrenbom, C.J., Bennike, O., Björk, S., and Lambeck, K. Holocene relative sea-level changes in the Qaqortoq area, southern Greenland. Boreas 35, (2006). 171187.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Svendsen, J.I., and Mangerud, J. Sea-level changes and pollen stratigraphy on the outer coast of Sunnmøre, western Norway. Nor. Geol. Tidsskr. 70, (1990). 111134.Google Scholar
Talbot, M.R. Nitrogen isotopes in palaeolimnology. Last, W.M., and Smol, J.P. Tracking Environmental Change Using Lake Sediments. Volumne 2: Physical and Geochemical Methods. (2001). Kluwer Academic Publishers, Dordrecht, The Netherlands. 401439.Google Scholar
Turney, C.S.M. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. J. Paleolimnol. 19, (1998). 199206.CrossRefGoogle Scholar
Utne, A. En veidekulturs-boplass I Lofoten. (1973). University of Tromsø, Storbåthallaren ved Nappstraumen. Thesis.Google Scholar
Vestøl, O. Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. J. Geodesy 80, (2006). 248258.CrossRefGoogle Scholar
Vorren, K.-D., and Moe, D. The early Holocene climate and sea-level changes in Lofoten and Vesterålen, North Norway. Nor. Geol. Tidsskr. 66, (1986). 135143.Google Scholar
Vorren, T.O., Vorren, K.-D., Alm, T., Gulliksen, S., and Løvlie, R. The last deglaciation (20, 000 to 11, 000 B.P.) on Andøya, northern Norway. Boreas 17, (1988). 4177.CrossRefGoogle Scholar
Wang, R.L., and Williams, W.D. Biogeochemical changes in the sediments of Lake Cantara South, a saline lake in South Australia. Hydrobiologia 457, (2001). 1724.CrossRefGoogle Scholar
Westman, P., and Hedenström, A. Environmental changes during isolation processes from the Litorina Sea as reflected by diatoms and geochemical parameters — a case study. Holocene 12, (2002). 531540.CrossRefGoogle Scholar
Wilson, G.P., Lamb, A.L., Leng, M.J., Gonzalez, S., and Huddart, D. δ13C and C/N as potential coastal palaeoenvironmental indicators in the Mersey Estuary, UK. Quatern. Sci. Rev. 24, (2005). 20152029.CrossRefGoogle Scholar
Xu, Y.P., Jaffe, R., Wachnicka, A., and Gaiser, E.E. Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: paleoenvironmental indicators of diatom-derived organic matter inputs. Org. Geochem. 37, (2006). 847859.CrossRefGoogle Scholar
Yon, D.A., Maxwell, J.R., and Ryback, G. 2, 6, 10-trimethyl-7-(3-methylbutyl)-dodecane, a novel sedimentary biological marker compound. Tetrahedron Lett. 23, (1982). 21432146.CrossRefGoogle Scholar
Zhang, Z., and Sachs, J.P. Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Org. Geochem. 38, (2007). 582608.CrossRefGoogle Scholar
Zhang, Z.H., Zhao, M.X., Yang, X.D., Wang, S.M., Jiang, X.H., Oldfield, F., and Eglinton, G. A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing, southwestern China. Org. Geochem. 35, (2004). 595613.CrossRefGoogle Scholar
Zong, Y. Implications of Paralia Sulcata abundance in Scottish isolation basin studies. Diatom Res. 12, (1997). 125150.CrossRefGoogle Scholar
Zong, Y., and Horton, B.P. Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK. J. Quatern. Sci. 14, (1999). 153167.3.0.CO;2-6>CrossRefGoogle Scholar