Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T13:16:42.275Z Has data issue: false hasContentIssue false

New evidence from heavy minerals and detrital zircons in Quaternary fluvial sediments for the evolution of the upper Yangtze River, South China

Published online by Cambridge University Press:  29 December 2022

Hengxu Huang
Affiliation:
Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan, China
Fang Xiang*
Affiliation:
Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan, China
Deyan Zhang
Affiliation:
Institut für Geologie, Leibniz Universität Hannover, Hannover 30167, Germany
Yuming Guo
Affiliation:
College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
Qi Yang
Affiliation:
College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
Li Ding
Affiliation:
College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
*
*Corresponding author e-mail address: cdxiangfang@126.com

Abstract

In the Three Gorges and adjacent areas, there are three planation surfaces and five terraces along the Yangtze River that record the evolution history of the river system. Here, we used diagnostic heavy minerals, U-Pb geochronology, and trace elements of detrital zircons from one planation surface, two terraces, and a modern point bar to reconstruct the evolution history of the upper Yangtze River, specifically the Chuan River in the Sichuan Basin. The sediments in the lowest planation surface had different felsic source rocks derived from east of the Three Gorges, which indicated that before the disintegration of the lowest planation surface (0.75 Ma), there were two paleorivers: the westward-flowing paleo-Chuan River and eastward-flowing paleo-Yangtze River separated by the Huangling Dome. At 0.75–0.73 Ma, the dominant detrital zircons from the Sichuan Basin in the sediments of terrace T5 (the highest terrace) confirmed that the paleo-Yangtze River cut through the Three Gorges and captured the paleo-Chuan River, and the Daliang Mountains became the new drainage divide. Finally, the appearance of materials from the upper Jinsha River in terrace T2 indicated that the paleo-Yangtze River progressively captured the paleo-Jinsha River, and the modern upper Yangtze River formed before 0.05 Ma. These river capture events of the upper Yangtze River confirmed the Quaternary uplift of the SE Tibetan Plateau.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Bateman, R.M., Catt, J.A., 1985. Modification of heavy mineral assemblages in English coversands by acid pedochemical weathering. Catena 12, 121.CrossRefGoogle Scholar
Bateman, R.M., Catt, J.A., 2007. Provenance and palaeoenvironmental interpretation of superficial deposits, with particular reference to post-depositional modification of heavy mineral assemblages. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use, Developments in Sedimentology. Vol. 58. Amsterdam: Elsevier, pp. 151188.CrossRefGoogle Scholar
Bea, F., 1996. Residence of REE, Y, Th, and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology 37, 521552.CrossRefGoogle Scholar
[BGMRSP] Bureau of Geology and Mineral Resources of Sichuan Provincial, 1991. Regional Geology of Sichuan Province. [In Chinese.] Geological Publishing House, Beijing.Google Scholar
Brookfield, M., 1998. The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: rivers draining southwards. Geomorphology 22, 285312.CrossRefGoogle Scholar
Burchfiel, B.C., Wang, E., 2003. Northwest-trending, middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance. Journal of Structural Geology 25, 781792.CrossRefGoogle Scholar
Carley, T.L., Miller, C.F., Wooden, J.L., Bindeman, I.N., Barth, A.P., 2011. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Mineralogy and Petrology 102, 135161.CrossRefGoogle Scholar
Carley, T.L., Miller, C.F., Wooden, J.L., Padilla, A.J., Schmitt, A.K., Economos, R.C., Bindeman, I.N., Jordan, B.T., 2014. Iceland is not a magmatic analog for the Hadean: evidence from the zircon record. Earth and Planetary Science Letters 405, 8597.CrossRefGoogle Scholar
Cawood, P.A., Nemchin, A.A., 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology 134, 209234.CrossRefGoogle Scholar
Chen, Y.L., Luo, Z.H., Zhao, J.X., Li, Z.X., Zhang, H.F., Song, B., 2004. Genesis of the Mianning–Kangding complexes from Sichuan Province: evidence from zircon SHRIMP age and geochemical features. [In Chinese.] Science in China, Series D: Earth Sciences 34, 687697.Google Scholar
Clark, M.K., House, M.A., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., 2005. Late Cenozoic uplift of southeastern Tibet. Geology 33, 525528.CrossRefGoogle Scholar
Clark, M.K., Royden, L.H., 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28, 703716.2.0.CO;2>CrossRefGoogle Scholar
Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., et al. , 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23. https://doi.org/10.1029/2002TC001402 .CrossRefGoogle Scholar
Clift, P.D., Blusztajn, J., Nguyen, A. D., 2006. Large-scale drainage capture and surface uplift in eastern Tibet–SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters 33, L19403.CrossRefGoogle Scholar
Clift, P.D., Carter, A., Wysocka, A., Hoang, L., Zheng, H., Neubeck, N., 2020. A Late Eocene–Oligocene through-flowing river between the Upper Yangtze and South China Sea. Geochemistry Geophysics Geosystems 21, e2020GC009046.CrossRefGoogle Scholar
Clift, P.D., Long, H.V., Hinton, R., Ellam, R.M., Hannigan, R., Tan, M.T., Blusztajn, J., Duc, N.A., 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River–Song Hong sediments. Geochemistry Geophysics Geosystems 9, Q04039.CrossRefGoogle Scholar
Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 Myr age from a new minimum age for east–west extension. Nature 374, 4952.CrossRefGoogle Scholar
Ding, L., Zhong, D.L., Pan, Y.S., Huang, X., Wang, Q.L., 1995. Fission track evidence for the Neocene rapid uplifting of the eastern Himalayan syntaxis. [In Chinese.] Chinese Science Bulletin 40, 14971500.Google Scholar
Dong, Y.P., Liu, X.M., Neubauer, F., Zhang, G.W., Tao, N., Zhang, Y.G., Zhang, X.N., Li, W., 2013. Timing of Paleozoic amalgamation between the North China and South China blocks: evidence from detrital zircon U–Pb ages. Tectonophysics 586, 173191.CrossRefGoogle Scholar
Dong, Y.P., Zhang, G.W., Hauzenberger, C., Neubauer, F., Yang, Z., Liu, X.M., 2011. Palaeozoic tectonics and evolutionary history of the Qinling orogen: evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos 122, 3956.CrossRefGoogle Scholar
Dortch, J.M., Dietsch, C., Owen, L.A., Caffee, M.W., Ruppert, K., 2011a. Episodic fluvial incision of rivers and rock uplift in the Himalaya and Transhimalaya. Journal of the Geological Society 168, 783804.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W. Kamp, D.U., 2011b. Catastrophic partial drainage of Pangong Tso, northern India and Tibet. Geomorphology 125, 109121.CrossRefGoogle Scholar
Fang, B.W., Zhang, H., Ye, R.S., Wang, Y., Chen, F.K., 2017. Petrogenesis of Laocheng granite in south Qinling: constraints from zircon U-Pb age and Sr-Nd isotopic composition. [In Chinese with English abstract.] Journal of Earth Sciences and Environment 39, 633651.Google Scholar
Force, E.R., 1980. The provenance of rutile. Journal of Sedimentary Research 50, 485488.Google Scholar
Fu, S., Kan, A.K., Xiao, J., Hu, J., Xiang, F., Zhang, T., Li, W.T., 2014. Research on tectonic deformation periods of structural landform landscape in the Daba Mountain National Geopark. [In Chinese with English abstract.] Acta Geoscientica Sinica 35, 510518.Google Scholar
Fu, X.W., Zhu, W.L., Geng, J.H., Yang, S.Y., Zhong, K., Huang, X.T., Zhang, L.Y., Xu, X., 2021. The present-day Yangtze River was established in the late Miocene: evidence from detrital zircon ages. Journal of Asian Earth Sciences 205, 104600.CrossRefGoogle Scholar
Galehouse, J.S., 1971. Point counting. In: Carver, R.E. (Ed.), Procedures in Sedimentary Petrology. Wiley, New York, pp. 385407.Google Scholar
Gao, W., Zhang, C.H., 2009. Zircon SHRIMP U-Pb ages of the Huangling granite and the tuff beds from Liantuo Formation in the Three Gorges area of Yangtze River, China and its geological significance. [In Chinese with English abstract.] Geological Bulletin of China 28, 4550.Google Scholar
Garzanti, E., Andò, S., 2007a. Heavy mineral concentration in modern sands: implications for provenance interpretation. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use, Developments in Sedimentology. Vol. 58. Elsevier, Amsterdam, pp. 517545.CrossRefGoogle Scholar
Garzanti, E., Andò, S., 2007b. Plate tectonics and heavy mineral assemblage of modern sands. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use, Developments in Sedimentology. Vol. 58. Elsevier, Amsterdam, pp. 741763.CrossRefGoogle Scholar
Garzanti, E., Andò, S., Giovanni, V., 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters 277, 422432.CrossRefGoogle Scholar
Gourbet, L., Leloup, P.H., Paquette, J.L., Sorrel, P., Maheo, G., Wang, G.C., Xu, Y.D., et al. , 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700–701, 162179.CrossRefGoogle Scholar
Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., et al. , 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 643646.CrossRefGoogle Scholar
Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology 170, 126.CrossRefGoogle Scholar
Guan, J.L., Zheng, L.L., Liu, J.H., Sun, Z.M., Cheng, W.H., 2011. Zircons SHRIMP U-Pb dating of diabase from Hekou, Sichuan Province, China and its geological significance. [In Chinese with English abstract.] Acta Geologica Sinica 85, 482490.Google Scholar
Harley, S.L., Kelly, N.M., Möller, A., 2007. Zircon behaviour and the thermal histories of mountain chains. Elements 3, 2530.CrossRefGoogle Scholar
Hartshorn, K., Hovius, N., Dade, B., Slingerland, R.L., 2002. Climate-driven bedrock incision in an active mountain belt. Science 297, 20362038.CrossRefGoogle Scholar
He, D.F., Zhu, W.G., Zhong, H., Ren, T., Bai, Z.J., Fan, H.P., 2013. Zircon U–Pb geochronology and elemental and Sr–Nd–Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc, SW China. Journal of Asian Earth Sciences 67–68, 117.Google Scholar
He, M.Y., Zheng, H.B., Bookhagen, B., Clift, P.D., 2014. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating. Earth Science Reviews 136, 121140.CrossRefGoogle Scholar
Hoke, G.D., Jing, L.Z., Hren, M.T., Wissink, G.K., Garzione, C.N., 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters 394, 270278.CrossRefGoogle Scholar
Huang, H., Cawood, P.A., Hou, M.C., Yang, J.H., Ni, S.J., Du, Y.S., Zhao, K.Y., et al. , 2016. Silicic ash beds bracket Emeishan Large Igneous province to <1m.y. at ~260Ma. Lithos 264, 1727.CrossRefGoogle Scholar
Hubert, J.F., 1962. A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Petrology 32, 440450.Google Scholar
Hu, J.M., Cui, J.T., Meng, Q.R., Zhao, C.Y., 2004. The U-Pb age of zircons separated from the Zhashui granite in Qinling Orogen and its significance. [In Chinese with English abstract.] Geological Review 50, 323329.Google Scholar
Hu, Z.B., Li, M.H., Dong, Z.J., Guo, L.Y., Bridgland, D., Pan, B.T., Li, X.H., Liu, X.F., 2019. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River. Global and Planetary Change 178, 129138.CrossRefGoogle Scholar
Hu, Z.B., Pan, B.T., Bridgland, D., Vandenberghe, J., Guo, L.Y., Fan, Y.L., Westaway, R., 2017. The linking of the upper–middle and lower reaches of the Yellow River as a result of fluvial entrenchment. Quaternary Science Reviews 166, 324338.CrossRefGoogle Scholar
Jia, J.T., Zheng, H.B., Huang, X.T., Wu, F.Y., Yang, S.Y., Wang, K., He, M.Y., 2010. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River. Chinese Science Bulletin 55, 15201528.CrossRefGoogle Scholar
Jin, G.S., 2006. Geochronology and Geochemistry Characters on Some Magmatic Rocks in the West of Xijir Ulan-Jinshajiang Suture Zone. [In Chinese with English abstract.] Master's thesis, Chinese Academy of Geological Sciences, Beijing (accessed November 6, 2022). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD2008&filename=2007213514.nh&uniplatform=NZKPT&v=xSEpiRQ4I4_u5spnT4c70UZDOP-IsnGwITWNAqxoB0PKBoKnpgkxxuJ8F8qJVlfe.Google Scholar
Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, N., McDonald, B., 2015. Zircon Th/U ratios in magmatic environs. Lithos 212–215, 397414.CrossRefGoogle Scholar
Lai, S.C., Qin, J.F., 2010. Ophiolite and Volcanic Rocks of the Mianlue Suture in the South Qinling. [In Chinese with English abstract.] Science Press, Beijing.Google Scholar
Lehnert, K., Su, Y., Langmuir, C., Sarbas, B., Nohl, U., 2000. A global geochemical database structure for rocks. Geochemistry Geophysics Geosystems 1. https://doi.org/10.1029/1999GC000026 .CrossRefGoogle Scholar
Leloup, P.H., Arnaud, N., Lacassin, R., Kienast, RJ.R., Harrison, T.M., Phan Trong, T.T., Replumaz, A., Tapponnier, P., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan–Red River shear zone SE Asia. Journal of Geophysical Research-Solid Earth 106, 66836732.CrossRefGoogle Scholar
Li, H.B., 2012. Mantle Plume Geodynamic Significances of the Emeishan Large Igneous Province: Evidence from Mafic Dykes, Geochemistry and Stratigraphic Records. [In Chinese with English abstract.] Doctoral dissertation, China University of Geoscience, Beijing (accessed November 16, 2022). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1012364506.nh&uniplatform=NZKPT&v=pFw9nJb21RkfcZSw7khzJlcMUunkaZBR98pjw0fjPqLmob55Zd5te8dchvNhP9g0.Google Scholar
Li, H.L., Sun, Y.J, Zhang, Y.Q., 2022. Chain actions generated high-elevation and high-relief topography of the eastern margin of the Tibetan Plateau: From deep earth forces to earthquake-induced dams. Frontiers in Earth Science 10, 791264.CrossRefGoogle Scholar
Li, J.J., 1991. The environmental effects of the uplift of the Qinghai–Xizang Plateau. Quaternary Science Reviews 10, 479483.Google Scholar
Li, J.J., Fang, X.M., Song, C.H., Pan, B.T., Ma, Y.Z., Yan, M.D., 2014. Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research. 81, 400423.CrossRefGoogle Scholar
Li, J.J., Xie, S.Y., Kuang, M.S., 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology 41, 125135.CrossRefGoogle Scholar
Ling, W.L., Duan, R.C., Liu, X.M., Cheng, J.P., Mao, X.W., Peng, L.H., Liu, Z.X., Yang, H.M., Ren, B.F., 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Science Bulletin 55, 24402448.CrossRefGoogle Scholar
Li, S.Y., Currie, B.S., Rowley, D.B., Ingalls, M., 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth and Planetary Science Letters 432, 415424.CrossRefGoogle Scholar
Liu, J., Chen, X.Q., Shi, W., Chen, P., Zhang, Y., Hu, J.M., Dong, S.W., Tingdong Li, T.D., 2019. Tectonically controlled evolution of the Yellow River drainage system in the Weihe region, North China: constraints from sedimentation, mineralogy and geochemistry. Journal of Asian Earth Sciences 179, 350364.CrossRefGoogle Scholar
Liu, J., Wang, P., Chen, X.Q., Shi, W., Song, L.J., Hu, J.M., 2022a. The changes in drainage systems of Weihe Basin and Sanmenxia Basin since Late Pliocene give new insights into the evolution of the Yellow River. Frontiers in Earth Science 9, 820674.CrossRefGoogle Scholar
Liu, J., Zhang, J.Q., Miao, X.D., Xu, S.J., Wang, H.X., 2020a. Mineralogy of the core YRD-1101 of the Yellow River Delta: implications for sediment origin and environmental evolution during the last ~1.9Myr. Quaternary International 537, 7987.CrossRefGoogle Scholar
Liu, Q.Y., Hilst, R.D., Li, Y., Yao, H.J., Chen, J.H., Guo, B., Qi, S.H., Wang, J., Huang, H., Li, S.C., 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience 7, 361365.CrossRefGoogle Scholar
Liu, S.G., 2006. Formation and Evolution of Dabashan Foreland Basin and Fold-and-Thrust Belt, Sichuan, China. [In Chinese.] Geological Publishing House, Beijing.Google Scholar
Liu, X.B., Chen, J., Maher, B.A., Zhao, B.C., Yue, W., Sun, Q.L., Chen, Z.Y., 2018. Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties. Geomorphology 303, 162171.CrossRefGoogle Scholar
Liu, X.J., Wu, R.W., Manuel, L.L., Xue, T.T., Zhou, Y., Li, K., Xu, Y., Qin, J.J., Ouyang, S., Wu, X.P., 2020b. Changes and drivers of freshwater mussel diversity patterns in the middle and lower Yangtze River Basin, China. Global Ecology and Conservation 22, e00998.CrossRefGoogle Scholar
Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J., Chen, H.H., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55, 15351546.CrossRefGoogle Scholar
Liu, Y.S., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C.G., Chen, H.H., 2008. In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.CrossRefGoogle Scholar
Liu, Y., Wang, S.J., Xu, S., Fabel, D., Stuart, F.M., Rodés, Á., 2022b. New chronological constraints on the Plio-Pleistocene uplift of the Guizhou Plateau, SE margin of the Tibetan Plateau. Quaternary Geochronology 67, 101237.CrossRefGoogle Scholar
Li, Y.C., Chen, J.P., Zhou, F.J., Song, S.Y., Zhang, Y.W., Gu, F.F., Cao, C., 2020. Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 368, 107351.CrossRefGoogle Scholar
Li, Y.Q., He, D.F., Li, D., Lu, R.Q., Fan, C., Sun, Y.P., Huang, H.Y., 2018. Sedimentary provenance constraints on the Jurassic to Cretaceous paleogeography of Sichuan Basin, SW China. Gondwana Research. 60, 1533.CrossRefGoogle Scholar
Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.CrossRefGoogle Scholar
Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., Compston, W., 1992. The Earth's oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta 56, 12811300.CrossRefGoogle Scholar
Ma, L.F., 2002. Atlas of Geophysics in China. [In Chinese.] Geological Publishing House, Beijing.Google Scholar
Mange, M.A., Maurer, H.F.W., 1992. Heavy Minerals in Colour. Chapman & Hall, London.CrossRefGoogle Scholar
Marmo, V., 1971. Developments in Petrology 2: Granite Petrology and the Granite Problem. Elsevier, Amsterdam.Google Scholar
Ma, X.H., Li, G.H., Ying, D.L., Zhang, B.J., Li, Y., Dai, X., Fan, Y., et al. , 2019. Distribution and gas-bearing properties of Permian igneous rocks in Sichuan Basin, SW China. Petroleum Exploration and Development 46, 228237.CrossRefGoogle Scholar
Ma, Y.W., Wang, G.Q., Hu, X.W., 1996. Tectonic deformation of Pengguan complex as a nappe. [In Chinese with English abstract.] Acta Geologica Sichuan 16, 110114.Google Scholar
McRivette, M.W., Yin, A., Chen, X., Gehrels, G.E., 2019. Cenozoic basin evolution of the central Tibetan plateau as constrained by U-Pb detrital zircon geochronology, sandstone petrology, and fission-track thermochronology. Tectonophysics 751, 150179.CrossRefGoogle Scholar
Meng, E., Liu, F.L., Du, L.L., Liu, P.H., Liu, J.H., 2015. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions, southwestern China: evidence from zircon U–Pb dating and Lu–Hf isotopes, and whole-rock geochemistry. Gondwana Research 28, 800815.CrossRefGoogle Scholar
Meng, X.Y., Wang, X.X., Ke, C.H., Li, J.B., Yang, Y., , X.Q., 2013. LA-ICP-MS zircon U-Pb age, geochemistry and Hf isotope of the granitoids from Huayang pluton in South Qinling orogen: Constraints on the genesis of Wulong plutons. [In Chinese with English abstract.] Geological Bulletin of China 32, 17041719.Google Scholar
Pan, B.T., Wang, J.P., Gao, H.S., Chen, Y.Y., Li, J.J., Liu, X.F., 2005a. Terrace dating as an archive of the run-through of the Sanmen Gorges. Progress in Natural Science 15, 10961103.Google Scholar
Pan, B.T., Wang, J.P., Gao, H.S., Guan, Q.Y., Wang, Y., Su, H., Li, B.Y., Li, J.J., 2005b. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River's running through Sanmen Gorges. Chinese Science Bulletin 50, 657664.CrossRefGoogle Scholar
Perrineau, A., Van Der Woerd, J., Gaudemer, Y., Jing, L.Z., Pik, R., Tapponnier, P., et al. , 2011. Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: implications for catchment evolution and plateau building. In: Gloaguen, R., Ratschbacher, L. (Eds.), Growth and Collapse of the Tibetan Plateau. Geological Society of London Special Publication 353, 189219.Google Scholar
Piper, D.J.W., Piper, G.P., Tubrett, M., Triantafyllidis, S., Strathdee, G., 2012. Detrital zircon geochronology and polycyclic sediment sources, Upper Jurassic–Lower Cretaceous of the Scotian Basin, southeastern Canada. Canada Journal of Earth Sciences 49, 15401557.CrossRefGoogle Scholar
Pratt, B., Burbank, D.W., Heimsath, A., Ojha, T., 2002. Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya. Geology 30, 911914.2.0.CO;2>CrossRefGoogle Scholar
Qiu, Y.M., Gao, S., McNaughton, N.J., Groves, D.I., Ling, W.L., 2000. First evidence of >3.2Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 1114.2.0.CO;2>CrossRefGoogle Scholar
Reid, A., Wilson, C.J.L., Shun, L., Pearson, N., Belousova, E., 2007. Mesozoic plutons of the Yidun arc, SW China: U-Pb geochronology and Hf isotopic signature. Ore Geology Review 34, 88106.CrossRefGoogle Scholar
Ren, Z.K., Lin, A.M., Rao, G., 2010. Late Pleistocene–Holocene activity of the Zemuhe Faults on the southeastern margin of the Tibetan Plateau. Tectonophysics 495, 324336.CrossRefGoogle Scholar
Richardson, N.J., Densmore, A.L., Seward, D., Wipf, M., Li, Y., 2010. Did incision of the Three Gorges begin in the Eocene? Geology 38, 551554.CrossRefGoogle Scholar
Roger, F., Malavieille, J., Leloup, Ph.H., Calassou, S., Xu, Z., 2004. Timing of granite emplacement and cooling in the Songpan–Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences 22, 465481.CrossRefGoogle Scholar
Royden, L.H., Burchfiel, B.C., Hilst, R.D.V.D., 2008. The geological evolution of the Tibetan Plateau. Science 321, 10541058.CrossRefGoogle ScholarPubMed
Schellart, W.P., Chen, Z., Strak, V., Duarte, J.C., Rosas, F.M., 2019. Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics. Nature Communications 10, 4480.CrossRefGoogle ScholarPubMed
Schulz, B., Klemd, R., Braetz, H., 2006. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochimica et Cosmochimica Acta 70, 697710.CrossRefGoogle Scholar
Shellnutt, J.G., 2014. The Emeishan large igneous province: a synthesis. Geoscience Frontiers 5, 369394.CrossRefGoogle Scholar
Shen, Y.C., 1965. Valley Geomorphology in the Upper Yangtze River. [In Chinese.] Science Press, Beijing.Google Scholar
Sircombe, K.N., 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology 124, 4767.CrossRefGoogle Scholar
Sun, X.L., Li, C.A., Kuiper, K.F., Wang, J.T., Tian, Y.T., Vermeesch, P., Zhang, Z.J., Zhao, J.X., Wijbrans, J.R., 2018. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic. Basin Research 30, 636649.CrossRefGoogle Scholar
Sun, X.L., Tian, Y.T., Kuiper, K.F., Li, C.A., Zhang, Z.J., Wijbrans, J.R., 2021. No Yangtze River prior to the Late Miocene: evidence from detrital muscovite and K-feldspar 40Ar/39Ar geochronology. Geophysical Research Letters 48, e2020GL089903.CrossRefGoogle Scholar
Tang, G.Z., Tao, M., 1997. The study of the neo-tectonic movement of Changjiang Gorges region and its relation to the damage of the project construction. [In Chinese with English abstract.] Bulletin Yichang Geology Institute 17, 170.Google Scholar
Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., Yang, J.S., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 16711677.CrossRefGoogle ScholarPubMed
Thompson, R.W., 1974. Mineralogy of sands from the Bengal and Nicobar fans, sites 218 and 211, Eastern Indian Ocean. In: Pimm, A.C. (Eds.), Initial Reports of the Deep Sea Drilling Project. Vol. 22., Texas A & M University, Ocean Drilling Program, College Station, pp. 711713.Google Scholar
Tian, L.J., Li, P.Z., Luo, Y., 1996. Developmental History of Yangtze Gorges. [In Chinese with English abstract.] Southwest Communications University Press, Chengdu.Google Scholar
Triantafyllidis, S., Pe-Piper, G., Yang, X., Hillier, C., 2008. Detrital zircons as provenance indicators in the Lower Cretaceous sedimentary rocks of the Scotian Basin, eastern Canada: a SEM-CL study of textures. Geological Survey of Canada Open File 5746.Google Scholar
Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical Geology 312–313, 190194.CrossRefGoogle Scholar
Vermeesch, P., Resentini, A., Garzanti, E., 2016. An R package for statistical provenance analysis. Sedimentary Geology 336, 1425.CrossRefGoogle Scholar
Wang, B.Q., Wang, W., Chen, W.T., Gao, J.F., Zhao, X.F., Yan, D.P., Zhou, M.F., 2013a. Constraints of detrital zircon U–Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, eastern Tibet. Sedimentary Geology 289, 7498.CrossRefGoogle Scholar
Wang, E., Burchfiel, B.C., 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geological Society of America Bulletin 112, 413423.2.0.CO;2>CrossRefGoogle Scholar
Wang, E., Burchfiel, B.C., Royden, L.H., Chen, L.Z., Chen, J.S., Li, W.X., Chen, Z.L., 1998a. Late Cenozoic Xianshuihe–Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper 327, 1108.Google Scholar
Wang, H.Z., 1985. Atlas of the Palaeogeography of China. [In Chinese.] Cartographic Publishing House, Beijing.Google Scholar
Wang, J.T., Li, C.A., Yang, Y., Wang, Q.L., 2009. The LA-ICPMS U-Pb detrital zircon geochronology and provenance study of sedimentary core in the Zhoulao town, the Jianghan Plain, China. [In Chinese with English abstract.] Quaternary Sciences 29, 343351.Google Scholar
Wang, L.J., Yu, J.H., Griffin, W.L., O'Reilly, S.Y., 2012. Early crustal evolution in the western Yangtze Block: evidence from U–Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Research 222–223, 368385.CrossRefGoogle Scholar
Wang, P., 2010. Formation of the Western Xuefengshan Salient and the Capture and Reversal of the Middle Yangtze River, Eastern Sichuan Basin, China. [In Chinese with English abstract.] Doctoral dissertation, China University of Geosciences, Beijing (accessed November 16, 2022). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD0911&filename=2010085694.nh&uniplatform=NZKPT&v=1U7mOmkzm_Jeamh3I8fN-q7jICs2CcFtmGgUvGTKo9jMnXTG5pcN6_qkhQvcG4ri.Google Scholar
Wang, P.L., Lo, C.H., Chung, S.L., Lee, T.Y., Lan, C.Y., Thang, T.V., 2000. Onset timing of left lateral movement along the Ailao Shan- Red River Shear zone: 40Ar/39Ar dating constraint from the Nam Dinh area, northeastern Vietnam. Journal of Asian Earth Sciences 18, 281292.CrossRefGoogle Scholar
Wang, P.L., Lo, C.H., Lee, T.Y., Chung, S.L., Lan, C.Y., Yen, N.T., 1998b. Thermochronological evidence for the movement of the Ailao Shan–Red River shear zone: a perspective from Vietnam. Geology 26, 887890.2.3.CO;2>CrossRefGoogle Scholar
Wang, P., Zheng, H.B., Liu, S.F., 2013b. Geomorphic constraints on middle Yangtze River reversal in eastern Sichuan Basin, China. Journal of Asian Earth Sciences 69, 7085.CrossRefGoogle Scholar
Wang, P., Zheng, H.B., Liu, S.F., 2013c. Reversal of the middle Yangtze River—tectonic geomorphic constraints in eastern Sichuan Basin. [In Chinese with English abstract.] Quaternary Sciences 33, 631644.Google Scholar
Wang, X., Hu, G., Saito, Y., Ni, G.Z., Hu, H., Yu, Z.Y., Chen, J.P., et al. , 2022. Did the modern Yellow River form at the mid-Pleistocene transition? Science Bulletin 67, 16031610.CrossRefGoogle ScholarPubMed
Wang, Y.Y., Fan, D.D., 2013. U-Pb ages and Hf isotopic composition of crystalline zircons from igneous rocks of the Changjiang drainage basin and their implications for provenance. [In Chinese with English abstract.] Marine Geology & Quaternary Geology 33, 97118.CrossRefGoogle Scholar
Wang, Y., Zhang, B., Schoenbohm, L.M., Zhang, J.J., Zhou, R.J., Hou, J.J., Ai, S., 2016. Late Cenozoic tectonic evolution of the Ailao Shan–Red River fault (SE Tibet): implications for kinematic change during plateau growth. Tectonics 35, 19691988.CrossRefGoogle Scholar
Wei, J.Q., Wang, J.X., 2012. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling Complex. [In Chinese with English abstract.] Geological Journal of China Universities 18, 589600.Google Scholar
Wei, J.Q., Wang, J.X., Wang, X.D., Shan, M.Y., Guo, H.M., 2009. Dating of mafic dikes from Kongling Group in Huangling Area and its implications. [In Chinese with English abstract.] Journal of Northwest University (Natural Science Edition) 39, 466471.Google Scholar
Wei, J.Q., Wei, Y.X., Wang, J.X., Wang, X.D., 2020. Geochronological constraints on the formation and evolution of the Huangling basement in the Yangtze craton, South China. Precambrian Research 345, 112.Google Scholar
Weislogel, A.L., 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan–Ganzi complex, central China. Tectonophysics 451, 331345.CrossRefGoogle Scholar
Wu, C., Ji, S.C., Cao, H., Dong, H.W., Chen, X.J., 2021. Jurassic post-collisional extension in the Songpan–Ganze Terrane, eastern Tibetan Plateau: evidence from weakly peraluminous A-type granites within the Zheduo–Gongga Massif. Geological Journal 56, 19111931.CrossRefGoogle Scholar
Wu, J., Zhang, K.X., Xu, Y.D., Wang, G.C., Garzione, C.N., Eiler, J., Leloup, P.H., Sorrel, P., Mahéo, G., 2018. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 510, 93108.CrossRefGoogle Scholar
Xiang, F., 2004. Forming of the Three Gorges of the Yangtze River and Sedimentary Response in the West Edge of Jianghan Basin and Adjacent Area. [In Chinese with English abstract.] Doctoral dissertation, Chengdu University of Technology, Chengdu (accessed November 16, 2022). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD9908&filename=2004085871.nh&uniplatform=NZKPT&v=9o07eFhhcVOpIY20gweEduQ4e3JBVYc9tV6ZGwUiyk18vyMk6x2NZteQS3mCwz0y.Google Scholar
Xiang, F., Du, W., Huang, H.X., Kang, D.Y., Zhu, H.B., Feng, Q., 2018. Provenance study of Fe–Ti oxide minerals in the Quaternary sediments in Yichang area and its implication of formation time of the Yangtze Three Gorges, China. Acta Geologica Sinica (English Edition) 92, 15981608.CrossRefGoogle Scholar
Xiang, F., Huang, H.X., Ogg, J.G., Zhu, H.B., Kang, D.Y., 2020. Quaternary sediment characteristics and paleoclimate implications of deposits in the Three Gorges and Yichang areas of the Yangtze River. Geomorphology 351, 106981.CrossRefGoogle Scholar
Xiang, F., Li, Z.H., Wang, C.S., Zhu, L.D., Liu, S., 2009. Cenozoic uplift characteristics of Shandouping section of Huangling Dome in the west of Hubei Province. [In Chinese with English abstract.] Acta Geologica Sinica 83, 12471254.Google Scholar
Xiang, F., Yang, D., Tian, X., Li, Z.H., Lu, L., 2011. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance. [In Chinese with English abstract.] Journal of Mineralogy and Petrology 31, 106114.Google Scholar
Xiang, F., Zhu, L.D., Wang, C.S., Li, Y.Z., Yang, W.G., 2005. Terrace age correlation and its significance in research of Yangtze Three Gorges, China. [In Chinese with English abstract.] Journal of Chengdu University of Technology (Science Technology Edition) 32, 162166.Google Scholar
Yang, C.Q., Shen, C.B., Massimiliano, Z., Yu, W., Shi, S.X., Mei, L.F., 2019. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges. International Geology Review 61, 19801999.CrossRefGoogle Scholar
Yang, J.K., 2014. Geochemical Characteristics of Metamorphic Rock Series in the Upper Member of Shigu Group in Badi Area, Northwest Yunnan. [In Chinese with English abstract.] Master's thesis, Kunming University of Science and Technology, Kunming (accessed November 16, 2022). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201501&filename=1014356284.nh&uniplatform=NZKPT&v=3pn6eV2GqoM-JN3V4jMJEZC4xRC3WGbchnFNljb6wNiKcmgiSR9HN100Fp2RQ3bH.Google Scholar
Yang, K., Liu, S.W., Li, Q.G., Wang, Z.Q., Han, Y.G., Wu, F.H., Zhang, F., 2009. LA-ICP-MS zircon U-Pb geochronology and geological significance of Zhashui granitoids and Dongjiangkou granitoids from Qinling, central China. [In Chinese with English abstract.] Acta Scientiarum Naturalium Universities Pekinensis 45, 841847.Google Scholar
Yang, S.Y., Li, C.X., Yokoyama, K., 2006. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: implications for sediment provenance and development history of the Changjiang River. Earth and Planetary Science Letters 245, 762776.CrossRefGoogle Scholar
Yan, Q.R., Hanson, A.D., Wang, Z.Q., Druschke, P.A., Yan, Z., Wang, T., Liu, D.Y., et al. , 2004. Neoproterozoic subduction and rifting on the northern margin of the Yangtze plate, China: implications for Rodinia reconstruction. International Geology Review 46, 817832.CrossRefGoogle Scholar
Yan, Q.R., Wang, Z.Q., Hanson, A.D., Druschke, P.A., Yan, Z., Liu, D.Y., Jian, P., et al. , 2003. SHRIMP age and geochemistry of the Bikou volcanic terrane: implications for Neoproterozoic tectonics on the northern margin of the Yangtze Craton. [In Chinese with English abstract.] Acta Geologica Sinica 77, 479490.Google Scholar
Yao, Z.Q., Shi, X.F., Qiao, S.Q., Liu, Q.S., Kandasamy, S., Liu, J.X., Liu, Y.G., et al. , 2017. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago. Scientific Reports 7, 2827.CrossRefGoogle Scholar
Yuan, C., Zhou, M.F., Sun, M., Zhao, Y.J., Wilde, S., Long, X.P., Yan, D.P., 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters 290, 481492.CrossRefGoogle Scholar
Zhang, G.W., Guo, A.L., Wang, Y.J., Li, S.Z., Dong, Y.P., Liu, S.F., He, D.F., et al. , 2013. Tectonics of South China continent and its implications. Science China Earth Sciences 56, 18041828.CrossRefGoogle Scholar
Zhang, J., Wan, S.M., Clift, P.D., Huang, J., Yu, Z.J., Zhang, K.D., Mei, X., et al. , 2019. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing? Quaternary Science Reviews 216, 7488.CrossRefGoogle Scholar
Zhang, P.Z., Shen, Z.K., Wang, M., Gan, W.J., Burgmann, R., Molnar, P., et al. , 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32, 809812.CrossRefGoogle Scholar
Zhang, S.B., Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Yuan, H.L., Wu, F.Y., 2009. Origin of TTG-like rocks from anatexis of ancient lower crust: geochemical evidence from Neoproterozoic granitoids in South China. Lithos 113, 347368.CrossRefGoogle Scholar
Zhang, X.B., Liu, Y., Wang, S.J., Liu, W.M., Xue, W.X., 2018. On the chronology of the Yellow Rivers and the Yangtze Rivers. [In Chinese with English abstract.] Mountain Research 36, 661668.Google Scholar
Zhang, Y.N., Li, R.X., Liu, H.Q., Zhu, R.J., Zhu, D.M., Wang, N., Zhao, B.S., 2014. Mesozoic–Cenozoic tectonic uplift history of Dabashan foreland structure in the northern rim of Sichuan Basin. [In Chinese with English abstract.] Journal of Earth Sciences and Environment 36, 230238.Google Scholar
Zhang, Y.Q., Li, H.L., 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion-related orogenic system. [In Chinese with English abstract.] Geology in China 43, 18291852.Google Scholar
Zhang, Y.Q., Li, H.L., Li, J., 2016. Neotectonics of the eastern margin of the Tibetan Plateau: new geological evidence for the change from Early Pleistocene transpression to Late Pleistocene–Holocene strike-slip faulting. Acta Geologica Sinica (English Edition) 90, 467485.Google Scholar
Zhang, Z.J., 2020. Analysis on the characteristics and genesis of Kangding complex. [In Chinese.] Western Resources, 3739.Google Scholar
Zhang, Z.J., Stephen Daly, J., Li, C.A., Tyrrell, S., Sun, X.L., Badenszki, E., Li, Y.W., Zhang, D., Tian, Y.T., Yan, Y., 2021. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma. Earth Science Reviews 216, 103601.CrossRefGoogle Scholar
Zhang, Z.Q., Zhang, G.W., Tang, S.H., 2002. Isotopic Geochronology of Metamorphic Strata in South Qinling Mountains. [In Chinese.] Geological Publishing House, Beijing, pp. 231246.Google Scholar
Zhao, F.Q., Zhao, W.P., Zuo, Y.C., Li, Z.H., 2006a. Zircon U-Pb ages of the migmatites from Kongling Complex. [In Chinese with English abstract.] Geology Survey and Research 29, 37.Google Scholar
Zhao, F.Q., Zhao, W.P., Zuo, Y.C., Li, Z.H. Xue, K.Q., 2006b. U–Pb geochronology of Neoproterozoic magmatic rocks in Hanzhong, southern Shaanxi, China. [In Chinese with English abstract.] Geology Bulletin of China 25, 383388.Google Scholar
Zhao, J.H., Zhou, M.F., 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos 104, 231248.CrossRefGoogle Scholar
Zhao, J.H., Zhou, M.F., 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos 107, 152168.CrossRefGoogle Scholar
Zhao, M., Wei, J.Q., Wang, J.X., 2012. Zircon U-Pb Age and Hf isotope composition from Yemadong mafic dikes in the Huangling area. [In Chinese with English abstract.] Geology and Mineral Resources of South China 28, 124131.Google Scholar
Zheng, H.B., 2015. Birth of the Yangtze River: age and tectonic-geomorphic implications. National Science Review 2, 438453.CrossRefGoogle Scholar
Zheng, H.B., Clift, P.C., Wang, P., Tada, R.J., Jia, J.T., He, M.Y., Jourdan, F., 2013. Pre-Miocene birth to the Yangtze River. Proceedings of the National Academy of Sciences USA 110, 75567561.CrossRefGoogle ScholarPubMed
Zhong, L.M., Xu, M., Yang, Y.N., Wang, X.B., 2018. The development and evolution of landform based on neotectonic movement: The Sancha river catchment in the southwestern China. Journal of Earth System Science 127, article 8.CrossRefGoogle Scholar
Zhou, D., Graham, S.A., 1996. Extrusion of the Altyn Tagh wedge: a kinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China. Geology 24, 427430.2.3.CO;2>CrossRefGoogle Scholar
Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y.Q., Ding, J., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters 196, 5167.CrossRefGoogle Scholar
Zhou, M.F., Yan, D.P., Wang, C.L., Qi, L., Kennedy, A., 2006. Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters 248, 286300.CrossRefGoogle Scholar
Zou, H., Bagas, L., Li, X.Y., Liu, H., Jiang, X.W., Li, Y., 2020. Origin and evolution of the Neoproterozoic Dengganping granitic complex in the western margin of the Yangtze Block, SW China: implications for breakup of Rodina supercontinent. Lithos 370–371, 105602.CrossRefGoogle Scholar
Zou, H., Li, Q.L., Bagas, L., Wang, X.C., Chen, A.Q., Li, X.H., 2021. A Neoproterozoic low-δ18O magmatic ring around South China: implications for configuration and breakup of Rodinia supercontinent. Earth and Planetary Science Letters 575, 117196.CrossRefGoogle Scholar
Supplementary material: File

Huang et al. supplementary material

Huang et al. supplementary material

Download Huang et al. supplementary material(File)
File 456.7 KB