Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T22:01:51.304Z Has data issue: false hasContentIssue false

North Atlantic Ice Sheet Fluctuations 10,000–70,000 Yr Ago as Inferred from Deposits on the Reykjanes Ridge, Southeast of Greenland

Published online by Cambridge University Press:  20 January 2017

Klas S. Lackschewitz
Affiliation:
Institute of Geology and Palaeontology, University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany
Karl-Heinz Baumann
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstraße 1-3, D-24148, Kiel, Germany
Bettina Gehrke
Affiliation:
FB Geosciences, University of Bremen, Postfach 330440, D-28334, Bremen, Germany
Hans-Joachim Wallrabe-Adams
Affiliation:
Brandensteinstrasse 29, 30519, Hannover, Germany
Jörn Thiede
Affiliation:
Alfred Wegener Institute, Postfach 120161, 27515, Bremerhaven, Germany
Georges Bonani
Affiliation:
ETH Zürich, Institut für Mittelenergiephysik, Hönggerberg, CH-8093, Zürich, Switzerland
Rudolf Endler
Affiliation:
Institute for Baltic Research, Seestraße 15, D-18119, Warnemünde, Germany
Helmut Erlenkeuser
Affiliation:
Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, University of Kiel, Max-Eyth-Str. 11, D-24098, Kiel, Germany
Jan Heinemeier
Affiliation:
Institute of Physics and Astronomy, AMS14C Dating Laboratory, University of Aarhus, DK-8000, Aarhus C, Denmark

Abstract

Marine records from the Reykjanes Ridge indicate ice sheet variations and abrupt climate changes. One of these records, ice-rafted detritus (IRD), serves as a proxy for iceberg discharges that probably indicates ice sheet fluctuations. The IRD records suggest that iceberg discharge 68,000–10,000 yr B.P. happened more frequently than the 7000- to 10,000-yr spacing of the Heinrich events. An IRD peak 67,000 to 63,000 yr B.P. further suggests that the Middle Weichselian glaciation started about 12,000 yr earlier in the North Atlantic than in the Norwegian Sea. Several later IRD events, in contrast, correlate with Norwegian Sea IRD-rich layers and imply coeval ice sheet advances in the North Atlantic and the Norwegian Sea. Coccoliths in a core from the Reykjanes Ridge show distinct peaks in species that record occasional inflow of warm surface water during the last glaciation, as previously reported from the eastern Labrador Sea. High abundances of coccoliths, together with a decrease of Neogloboquadrina pachyderma sin. and relatively low δ18O values, imply enhanced advection of the North Atlantic Current 69,000–67,000 yr B.P., 56,000–54,000 yr B.P., 35,000–33,000 yr B.P., and 26,000–23,000 yr B.P. This advection provided a regional moisture source for extension of ice sheets onto the shelf. In contrast, most of the IRD events are characterized by cold polar surface water masses indicating rapid variations in ocean surface conditions.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J.T., Erlenkeuser, H., Tedesco, K., Aksu, A.E., Jull, A.J.T., 1994. Late Quaternary (Stage 2 and 3) meltwater and Heinrich events, Northwest Labrador Sea. Quaternary Research. 41 2634.CrossRefGoogle Scholar
Baumann, K.-H., Lackschewitz, K.S., Mangerud, J., Spielhagen, R.F., Wolf-Welling, T.C.W., Henrich, R., Kassens, H., 1995. Reflection of Scandinavian ice sheet fluctuations in Norwegian Sea sediments during the past 150,000 years. Quaternary Research. 43 185197.Google Scholar
Baumann, K.-H., 1990. Veränderlichkeit der Coccolithophoridenflora des Europäischen Nordmeeres im Jungquartär. Berichte Sonderforschungsbereich 313. 22 146.Google Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., Ivy, S., 1992. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature. 360 245249.Google Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature. 365 143147.Google Scholar
Bond, G., Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science. 267 10051010.CrossRefGoogle ScholarPubMed
Broecker, W., Bond, G., Klas, M., Clark, E., McManus, J., 1992. Origin of the northern Atlantic's Heinrich events. Climate Dynamics. 6 265273.Google Scholar
Broecker, W.S., 1994. Massive iceberg discharges as triggers for global climate change. Nature. 372 421.CrossRefGoogle Scholar
Conolly, J.R., Ewing, M., 1965. Pleistocene glacial marine zones in North Atlantic deep-sea sediments. Nature. 208 135139.CrossRefGoogle Scholar
Cortijo, E., 1995. La variabilité climatique dans l'Atlantique Nord depuis 128 000 ans: Relations entre les calottes de glace et l'ocan de surface. Université de Paris-Sud U.F.R. Scientifique d'Orsay.Google Scholar
Dansgaard, W., Johnson, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, , Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., 1993. Evidence for general instability of past climate from a 250 kyr ice-core record. Nature. 364 218220.CrossRefGoogle Scholar
De Vernal, A., Mudie, P.J., 1992. Pliocene and Quaternary dinoflagellate cyst stratigraphy in the Labrador Sea: Paleoenvironmental implications. Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, p. 329–346.Google Scholar
Dietrich, G., Kalle, K., Krauss, W., Siedler, G., 1980. General Oceanography. Wiley, New York. Google Scholar
Endler, R., Lackschewitz, K.S., 1993. RV “SONNE”—Cruise SO82—SO82A: Geophysical investigations along the Reykjanes Ridge, North Atlantic; SO82B: Sedimentation pattern of the Reykjanes Ridge, North Atlantic. Meereswissenschaftliche Berichte. 5.Google Scholar
Fairbanks, R.G., 1989. A 17000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature. 143 637642.Google Scholar
Fronval, T., Jansen, E., Bloemendal, J., Johnsen, S., 1995. Oceanic evidence for coherent fluctuations in Fennoscandian and Laurentide ice sheets on millenium timescales. Nature. 374 443446.CrossRefGoogle Scholar
Gard, G., 1988. Late Quaternary calcareous nannofossil biochronology and paleo-oceanography of arctic and subartic seas. Meddelanden Stockholms Universitets Geologiska Institution. 275 145.Google Scholar
Grousset, F.E., Labeyrie, L., Sinko, J.A., Cremer, M., Bond, G., Duprat, J., Cortijo, E., Huon, S., 1993. Patterns of ice-rafted detritus in the glacial North Atlantic (40–55°N). Paleoceanography. 8 175192.Google Scholar
Gwiazda, R.H., Hemming, S.R., Broecker, W.S., 1996. Provenance of icebergs during Heinrich event 3 and the contrast to their sources during other Heinrich episodes. Paleoceanography. 11 371378.CrossRefGoogle Scholar
Gwiazda, R.H., Hemming, S.R., Broecker, W.S., 1996. Tracking the sources of icebergs with lead isotopes: The provenance of ice-rafted debris in Heinrich layer 2. Paleoceanography. 11 7793.Google Scholar
Hebbeln, D., Dokken, T., Andersen, E.S., Hald, M., Elverhoi, A., 1994. Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature. 370 357360.CrossRefGoogle Scholar
Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research. 29 143152.Google Scholar
Keigwin, L.D., Jones, G.A., 1994. Western North Atlantic evidence for millennial-scale changes in ocean circulation and climate. Journal of Geophysical Research. 99 12,39712,410.Google Scholar
Krauss, W., 1986. The North Atlantic Current. Journal of Geophysical Research. 91 50615074.Google Scholar
Krauss, W., Käse, R.H., 1984. Mean circulation and eddy kinetic energy in the Eastern North Atlantic. Journal of Geophysical Research. 89 34073415.Google Scholar
Labeyrie, L.D., Duplessy, J.-C., 1985. Changes in the oceanic13 12 . Palaeogeography, Palaeoclimatology, Palaeoecology. 50 217240.Google Scholar
Lackschewitz, K.S., Endler, R., Gehrke, B., Wallrabe-Adams, H.-J., Thiede, J., 1996. Morphology and modern depositional environment of the Reykjanes Ridge between 59°N–60°N: Evidence for topography- and current-controlled deposition. Deep-Sea Research I. 43 16831711.Google Scholar
Lackschewitz, K.S., Wallrabe-Adams, H.-J., 1997. Composition and origin of volcanic ash zones in Late Quaternary sediments from the Reykjanes Ridge: Evidence for ash fallout and ice-rafting. Marine Geology. 136 209224.Google Scholar
MacAyeal, D.R., 1993. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography. 8 775784.Google Scholar
Manighetti, B., McCave, I.N., Maslin, M., Shackleton, N.J., 1995. Chronology for climate change: Developing age models for Biogeochemical Ocean Flux Study cores. Paleoceanography. 10 513525.CrossRefGoogle Scholar
Martinson, D.G., Nicklas, G.P., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000 year chronostratigraphy. Quaternary Research. 27 129.CrossRefGoogle Scholar
Maslin, M.A., Shackleton, N.J., Pflaumann, U., 1995. Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds. Paleoceanography. 10 527544.Google Scholar
Paillard, D., Labeyrie, L., 1994. Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature. 372 162164.Google Scholar
Paasche, E., 1960. Phytoplankton distribution in the Norwegian Sea in June 1954, related to hydrography and compared with primary production data. Report of Norwegian Fishery marine Investigations. 12 177.Google Scholar
Rahman, A., de Vernal, A., 1994. Surface oceanographic changes in the eastern Labrador Sea: Nannofossil record of the last 31,000 years. Marine Geology. 121 247263.Google Scholar
Revel, M., Sinko, J.A., Grousset, F.E., 1996. Sr and Nd isotopes of North Atlantic lithic particles: Paleoclimatic implications. Paleoceanography. 11 95113.Google Scholar
Ruddiman, W.F., Glover, L.K., 1972. Vertical mixing of ice-rafted volcanic ash in the North Atlantic sediments. Geological Society of America Bulletin. 83 28172836.Google Scholar
Ruddiman, W.F., 1977. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40 to 65). Geological Society of America Bulletin. 88 18131827.Google Scholar
Ruddiman, W.F., McIntyre, A., 1984. Ice-age thermal response and climatic role of the surface Atlantic Ocean (lat. 40° to 65°N). Geological Society of America Bulletin. 95 381396.Google Scholar
Samtleben, C., Schröder, A., 1992. Living coccolithophore communities in the Norwegian-Greenland Sea and their record in sediments. Marine Micropaleontology. 19 333354.Google Scholar
Samtleben, C., Schäfer, P., Andruleit, H., Baumann, A., Baumann, K.-H., Kohly, A., Matthiessen, J., Schröder-Ritzrau, A., 1995. Plankton in the Norwegian-Greenland Sea: From living communities to sediment assemblages—An actualistic approach. Geologische Rundschau. 84 108136.CrossRefGoogle Scholar
Shackleton, N.J., Imbrie, J., Hall, M.A., 1983. Oxygen and carbon isotope record of the East Pacific core V19-30: Implications for the formation of deep water in the late Pleistocene North Atlantic. Earth Planetary Science Letters. 65 233244.Google Scholar
Vogelsang, E., 1990. Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoff- und Sauerstoffisotope. Berichte Sonderforschungsbereich 313. 23 136.Google Scholar
Wallrabe-Adams, H.-J., Lackschewitz, K.S., 1993. RV “PROF. LOGACHEV”—Cruise LO09—Sediment distribution on the Reykjanes Ridge near 59° N. Geomar Report. 23 135.Google Scholar
Weinelt, M.S., 1993. Veränderungen der Oberflächenzirkulation im Europäischen Nordmeer während der letzten 60.000 Jahre–Hinweise aus stabilen Isotopen. Berichte Sonderforschungsbereich 313. 41 1106.Google Scholar
Winter, A., Siesser, W.G., 1994. Coccolithophors. Cambridge Univ. Press, Cambridge. Google Scholar
Wolf, T.C.W., 1991. Paläo-ozeanographisch-klimatische Entwicklung des nördlichen Nordatlantiks seit dem späten Neogen (ODP Legs 105 und 104, DSDP Leg 81). GEOMAR Report. 5 192.Google Scholar