Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T07:01:19.598Z Has data issue: false hasContentIssue false

On the formation of desert loess

Published online by Cambridge University Press:  29 April 2020

Nicholas Lancaster*
Affiliation:
Desert Research Institute, Reno, Nevada, USA
*
*Corresponding author at: Desert Research Institute, Reno, Nevada, USA. E-mail address: Nick.lancaster@dri.edu (N. Lancaster).

Abstract

Sequences of quartz-rich coarse (20−63 μm) silt occur in many low- and midlatitude unglaciated arid and semiarid areas and have been termed “desert loess.” The processes by which these deposits are generated have been debated for decades. All hypotheses to explain their origin seek to provide mechanisms for the generation of silt-sized material without glacial grinding, which is the main process involved in the production of coarse silt at high latitudes. Possible mechanisms for the formation of coarse silt in arid regions include derivation from preexisting siltstones, mechanical weathering of silicate rocks, and abrasion of sand grains in active dune environments during intense transport events. Examination of the characteristics of desert loess and field and laboratory experiments to assess the role of dune areas as a source of coarse silt by abrasion and/or resuspension of residual fines suggests that many loess sequences are dominated by locally derived coarse silt. Improvements in the characterization of desert loess particle size, mineralogy, and geochemistry are needed, however, to identify sources and sinks of coarse silt, especially when combined with climatic back-trajectory analysis. Properly scaled experiments and modeling of particle collisions will also help to better quantify the effectiveness of abrasion in the generation of coarse silt in support of field observations.

Type
Review Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleinikoff, J.N., Muhs, D.R., Bettis, E.A. III, Johnson, W.C., Fanning, C.M., Benton, R., 2008. Isotopic evidence for the diversity of late Quaternary loess in Nebraska: glaciogenic and nonglaciogenic sources. GSA Bulletin 120, 13621377.CrossRefGoogle Scholar
Aleinikoff, J.N., Stafford, T.W.J., Muhs, D.R., Sauer, R.R., Fanning, C.M., 1999. Late Quaternary Loess in northeastern Colorado: Part II-Pb isotopic evidence for the variability of loess sources. Geological Society of America Bulletin 111, 18761883.2.3.CO;2>CrossRefGoogle Scholar
Amit, R., Enzel, Y., Crouvi, O., Simhai, O., Matmon, A., Porat, N., McDonald, E., Gillespie, A.R., 2011. The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene. Geological Society of America Bulletin 123, 873889.CrossRefGoogle Scholar
Amit, R., Enzel, Y., Mushkin, A., Gillespie, A., Batbaatar, J., Crouvi, O., Vandenberghe, J., An, Z., 2014. Linking coarse silt production in Asian sand deserts and Quaternary accretion of the Chinese Loess Plateau. Geology 42, 2326.CrossRefGoogle Scholar
Amit, R., Gerson, R., 1986. The evolution of Holocene reg (gravelly) soils in deserts: an example from the Dead Sea region. CATENA 13, 5979.CrossRefGoogle Scholar
Assallay, A.M., Rogers, C.D.F., Smalley, I.J., Jefferson, I.F., 1998. Silt: 2–62 μm, 9–4φ. Earth-Science Reviews 45, 6188.CrossRefGoogle Scholar
Bhattachan, A., D'Odorico, P., Okin, G.S., Dintwe, K., 2013. Potential dust emissions from the southern Kalahari's dunelands. Journal of Geophysical Research: Earth Surface 118, 307314.Google Scholar
Bird, A., Stevens, T., Rittner, M., Vermeesch, P., Carter, A., Andò, S., Garzanti, E., Lu, H., Nie, J., Zeng, L., Zhang, H., Xu, Z., 2015. Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 254264.CrossRefGoogle Scholar
Blatt, H., 1967. Original characteristics of clastic quartz grains. Journal of Sedimentary Research 37, 401424.Google Scholar
Blatt, H., 1987. Perspectives: oxygen isotopes and the origin of quartz. Journal of Sedimentary Research 57, 373377.CrossRefGoogle Scholar
Bolles, K., Forman, S.L., Sweeney, M., 2017. Aeolian processes and heterogeneous dust emissivity during the 1930s Dust Bowl drought and implications for projected 21st-century megadroughts. The Holocene 27, 15781588.CrossRefGoogle Scholar
Bryan, K., 1945. Glacial versus desert origin of loess. American Journal of Science 243, 245246.CrossRefGoogle Scholar
Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 7189.CrossRefGoogle Scholar
Bullard, J.E., McTainsh, G.H., Pudmenzky, C., 2004. Aeolian abrasion and modes of fine particle production from natural red dune sands: an experimental study. Sedimentology 51, 11031125.CrossRefGoogle Scholar
Bullard, J.E., McTainsh, G.H., Pudmenzky, C., 2007. Factors affecting the nature and rate of dust production from natural dune sands. Sedimentology 54, 169182.CrossRefGoogle Scholar
Bullard, J.E., White, K., 2005. Dust production and the release of iron oxides resulting from the aaeolian abrasion of natural dune sands. Earth Surface Processes and Landforms 30, 95106.CrossRefGoogle Scholar
Cooke, R.U., Goudie, A.S., Warren, A., 1993. Desert Geomorphology. UCL Press, London.Google Scholar
Coque-Delhuille, B.C., Gentelle, P.P., 1998. Aeolian dust and superficial formations in the arid part of Yemen. In: Alasharan, A.S., Glennie, K.W., Whittle, G.L., Kendall, C.G.S.C. (Eds.), Quaternary Deserts and Climatic Change. Balkema, Rotterdam, pp. 199208.Google Scholar
Coudé-Gaussen, G., Rognon, P., 1988. The upper Pleistocene loess of southern Tunisia: a statement. Earth Surface Processes and Landforms 13, 137151.CrossRefGoogle Scholar
Crouvi, O., Amit, R., Enzel, Y., Gillespie, A.R., 2010. Active sand seas and the formation of desert loess. Quaternary Science Reviews 29, 20872098.CrossRefGoogle Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N., Sandler, A., 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Reseach 70, 275282.CrossRefGoogle Scholar
Crouvi, O., Schepanski, K., Amit, R., Gillespie, A.R., Enzel, Y., 2012. Multiple dust sources in the Sahara Desert: the importance of sand dunes. Geophysical Research Letters 39, L13401.CrossRefGoogle Scholar
Cui, M., Lu, H., Wiggs, G.F.S., Etyemezian, V., Sweeney, M.R., Xu, Z., 2019. Quantifying the effect of geomorphology on aeolian dust emission potential in northern China. Earth Surface Processes and Landforms 44, 28722884.CrossRefGoogle Scholar
Dearing, J.A., Livingstone, I.P., Bateman, M.D., White, K., 2001. Palaeoclimate records from OIS 8.0–5.4 recorded in loess-palaeosol sequences on the Matmata Plateau, southern Tunisia, based on mineral magnetism and new luminesence dating. Quaternary International 76/77, 4356.CrossRefGoogle Scholar
Dearing, J., Livingstone, I., Zhou, L.P., 1996. A late Quaternary magnetic record of Tunisian loess and its climatic significance. Geophysical Research Letters 23, 189192.CrossRefGoogle Scholar
Dietze, M., Dietze, E., Lomax, J., Fuchs, M., Kleber, A., Wells, S.G., 2016. Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA. Quaternary Research 85, 416.CrossRefGoogle Scholar
Durian, D.J., Bideaud, H., Duringer, P., Schröder, A.P., Marques, C.M., 2007. Shape and erosion of pebbles. Physical Review E 75, 021301.CrossRefGoogle ScholarPubMed
Dutta, P.K., Zhou, Z., dos Santos, P.R., 1993. A theoretical study of mineralogical maturation of aeolian sand. Geological Society of America Special Paper 284, 203209.CrossRefGoogle Scholar
Eckardt, F., Washington, R., Wilkinson, M.J., 2001. The origin of dust on the west coast of southern Africa. Palaeoecology of Africa 27, 207219.Google Scholar
Ehrmann, W., Schmiedl, G., Beuscher, S., Krüger, S., 2017. Intensity of African humid periods estimated from Saharan dust fluxes. PLoS One 12, e0170989.CrossRefGoogle ScholarPubMed
Eitel, B., Blümel, W.D., Hüser, K., Mauz, B., 2001. Dust and loessic alluvial deposits in northwestern Namibia (Damaraland, Kaokoveld): sedimentology and palaeoclimatic evidence based on luminescence data. Quaternary International 76/77, 5766.CrossRefGoogle Scholar
Enzel, Y., Amit, R., Crouvi, O., Porat, N., 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai-Negev Erg. Quaternary Research 74, 121131.CrossRefGoogle Scholar
Ewing, R.C., in press, White Sands. In:Lancaster, N., Hesp, P. (Eds.) Inland Dunes of North America, Springer, Dordrecht.Google Scholar
Felix-Henningsen, P., Kornatz, P., Eberhardt, E., 2009. Palaeo-climatic evidence of soil development on Sahelian ancient dunes of different age in Niger, Chad and Mauretania. Palaeoecology of Africa 29, 91105.Google Scholar
Fitzsimmons, K.E., Nowatzki, M., Dave, A.K., Harder, H., 2019. Intersections between wind regimes, topography and sediment supply: perspectives from aaeolian landforms in central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 540, 109531.CrossRefGoogle Scholar
Gerson, R., Amit, R., 1987. Rates and modes of dust accretion and deposition in an arid region—the Negev, Israel. In: Frostick, L.E., Reid, I. (Eds.), Desert Sediments: Ancient and Modern. Blackwell Scientific, Oxford, pp. 157169.Google Scholar
Goossens, D., Buck, B., 2011. Gross erosion, net erosion and gross deposition of dust by wind: field data from 17 desert surfaces. Earth Surface Processes and Landforms 36, 610623.CrossRefGoogle Scholar
Goudie, A.S., Parker, A.G., Bull, P.A., White, K., Al-Farraj, A., 2000. Desert loess in Ras Al Khaimah, United Arab Emirates. Journal of Arid Environments 46, 123135.10.1006/jare.2000.0663CrossRefGoogle Scholar
Goudie, A.S., Watson, A., 1981. The shape of desert sand dune grains. Journal of Arid Environments 4, 185190.CrossRefGoogle Scholar
Haberlah, D., Williams, M.A.J., Halverson, G., McTainsh, G.H., Hill, S.M., Hrstka, T., Jaime, P., Butcher, A.R., Glasby, P., 2010. Loess and floods: high-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia. Quaternary Science Reviews 29, 26732693.CrossRefGoogle Scholar
Huang, Y., Kok, J., Martin, R.L., Swet, N., Katra, I., Gill, T., Reynolds, R.L., Freire, L.S., 2019. Fine dust emissions from active sands at coastal Oceano Dunes, California. Atmospheric Chemistry and Physics 19, 29472964.CrossRefGoogle Scholar
Jerolmack, D.J., Reitz, M.D., Martin, R.L., 2011. Sorting out abrasion in a gypsum dune field. Journal of Geophysical Research 116, F02003.CrossRefGoogle Scholar
Kapp, P., Pullen, A., Pelletier, J.D., Russell, J., Goodman, P., Cai, F., 2015. From dust to dust: Quaternary wind erosion of the Mu Us Desert and Loess Plateau, China. Geology 43, 835838.CrossRefGoogle Scholar
Kocurek, G., Lancaster, N., 1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology 46, 505515.CrossRefGoogle Scholar
Kok, J.F., Eric, J.R.P., Timothy, I.M., Diana Bou, K., 2012. The physics of wind-blown sand and dust. Reports on Progress in Physics 75, 106901.CrossRefGoogle Scholar
Krapivsky, P.L., Redner, S., 2007. Smoothing a rock by chipping. Physical Review E 75, 031119.CrossRefGoogle Scholar
Kuenen, P.H., 1960. Experimental abrasion 4: aeolian action. Journal of Geology 68, 427449.CrossRefGoogle Scholar
Kuenen, P.H., 1969. Origin of quartz silt. Journal of Sedimentary Research 39, 16311633.CrossRefGoogle Scholar
Lancaster, N., Kocurek, G., Singhvi, A.K., Pandey, V., Deynoux, M., Ghienne, J.-P., Lo, K., 2002. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara of Mauritania. Geology 30, 991994.2.0.CO;2>CrossRefGoogle Scholar
Lancaster, N., Wolfe, S., Thomas, D., Bristow, C., Bubenzer, O., Burrough, S., Duller, G., Halfen, A., Hesse, P., Roskin, J., Singhvi, A., Tsoar, H., Tripaldi, A., Yang, X., Zárate, M., 2016. The INQUA Dunes Atlas chronologic database. Quaternary International 410 (Part B), 310.CrossRefGoogle Scholar
Lézine, A.-M., Hély, C., Grenier, C., Braconnot, P., Krinner, G., 2011. Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data. Quaternary Science Reviews 30, 30013012.CrossRefGoogle Scholar
Licht, A., Pullen, A., Kapp, P., Abell, J., Giesler, N., 2016. Aeolian cannibalism: reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Geological Society of America Bulletin 128, 944956.CrossRefGoogle Scholar
Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M.A., Gao, G., 2020. Loess genesis and worldwide distribution. Earth-Science Reviews 201, 102947.CrossRefGoogle Scholar
Li, Y., Song, Y., Fitzsimmons, K.E., Chen, X., Wang, Q., Sun, H., Zhang, Z., 2018. New evidence for the provenance and formation of loess deposits in the Ili River Basin, Arid Central Asia. Aeolian Research 35, 18.CrossRefGoogle Scholar
Magaritz, M., Enzel, Y., 1990. Standing water deposits as indicators of Late Quaternary dune migration in the northwestern Negev, Israel. Climatic Change 16, 307318.CrossRefGoogle Scholar
Maher, B.A., 2016. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quaternary Science Reviews 154, 2384.CrossRefGoogle Scholar
Mahowald, N., Albani, S., Kok, J.F., Engelstaeder, S., Scanza, R., Ward, D.S., Flanner, M.G., 2014. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research 15, 5371.CrossRefGoogle Scholar
Mason, J.A., 2001. Transport direction of Peoria Loess in Nebraska and implications for loess sources on the Central Great Plains. Quaternary Research 56, 7986.CrossRefGoogle Scholar
Mason, J.A., Swinehart, J.B., Hanson, P.R., Loope, D.B., Goble, R.J., Miao, X., Schmeisser, R.L., 2011. Late Pleistocene dune activity in the central Great Plains, USA. Quaternary Science Reviews 30, 38583870.CrossRefGoogle Scholar
McFadden, L.D., Wells, S.G., Jercinovich, M.J., 1987. Influences of aeolian and pedogenic processes on the origin and evolution of desert pavements. Geology 15, 504508.2.0.CO;2>CrossRefGoogle Scholar
McGee, D., Broecker, W.S., Winckler, G., 2010. Gustiness: the driver of glacial dustiness? Quaternary Science Reviews 29, 23402350.CrossRefGoogle Scholar
McGee, D., deMenocal, P.B., Winckler, G., Stuut, J.B.W., Bradtmiller, L.I., 2013. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth and Planetary Science Letters 371–372, 163176.CrossRefGoogle Scholar
McTainsh, G., 1984. The nature and origin of the aeolian mantles of central northern Nigeria. Geoderma 33, 1337.CrossRefGoogle Scholar
Miao, X., Mason, J.A., Swinehart, J.B., Loope, D.B., Hanson, P.R., Goble, R.J., Liu, X., 2007. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology 35, 119122.CrossRefGoogle Scholar
Muhs, D.R., 2013. The geologic records of dust in the Quaternary. Aeolian Research 9, 348.CrossRefGoogle Scholar
Muhs, D.R., 2018. The geochemistry of loess: Asian and North American deposits compared. Journal of Asian Earth Sciences 155, 81115.CrossRefGoogle Scholar
Muhs, D.R., Bettis, E.A. III, 2003. Quaternary loess-paleosol sequences as examples of climate-driven sedimentary events. In: Chan, M.A., Archer, A.W. (Eds.), Extreme Depositional Environments, Mega End Members in Geologic Time. Geological Society of America, Boulder, CO, pp. 5374.Google Scholar
Muhs, D.R., Bettis, E.A. III, Aleinikoff, J.N., McGeehin, J.P., Beann, J., Skipp, G., Marshall, B.D., Roberts, H.M., Johnson, W.C., Benton, R., 2008. Origin and paleoclimatic significance of late Quaternary loess in Nebraska: evidence from stratigraphy, chronology, sedimentology, and geochemistry. GSA Bulletin 120, 13781407.CrossRefGoogle Scholar
Muhs, D.R., Budahn, J.R., Reheis, M.C., Beann, J., Skipp, G., Fisher, E., 2007. Airborne dust transport to the eastern Pacific off southern California: evidence from San Clemente Island. Journal of Geophyical Research 112, D13203.CrossRefGoogle Scholar
Muhs, D.R., Budahn, J., Skipp, G., Prospero, J.M., Patterson, D., Bettis Iii, E.A., 2010. Geochemical and mineralogical evidence for Sahara and Sahel dust additions to Quaternary soils on Lanzarote, eastern Canary Islands, Spain. Terra Nova 22, 399410.CrossRefGoogle Scholar
Muhs, D.R., Roskin, J., Tsoar, H., Skipp, G., Budahn, J.R., Sneh, A., Porat, N., Stanley, J.-D., Katra, I., Blumberg, D.G., 2013. Origin of the Sinai–Negev Erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history. Quaternary Science Reviews 69, 2848.CrossRefGoogle Scholar
Mulitza, S., Heslop, D., Pittauerova, D., Fischer, H.W., Meyer, I., Stuut, J.-B., Zabel, M., et al. , 2010. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226228.CrossRefGoogle ScholarPubMed
Nahon, D., Trompette, R., 1982. Origin of siltstones: glacial grinding versus weathering. Sedimentology 29, 2535.CrossRefGoogle Scholar
Nettleton, W.D., Chadwick, O.A., 1996. Late Quaternary, redeposited loess-soil developmental sequences, South Yemen. Geoderma 70, 2136.CrossRefGoogle Scholar
Nickling, W.G., 1978. Aeolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian Journal of Earth Science 15, 10691084.CrossRefGoogle Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H., Jan Weltje, G., 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26, 230242.CrossRefGoogle Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667.CrossRefGoogle Scholar
Pye, K., Sperling, C.H.B., 1983. Experimental investigation of silt formation by static breakage processes: the effect of temperature, moisture and salt on quartz dune sand and granitic regolith. Sedimentology 30, 4962.CrossRefGoogle Scholar
Roskin, J., Porat, N., Tsoar, H., Blumberg, D.G., Zander, A.M., 2011a. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quaternary Science Reviews 30, 16491674.CrossRefGoogle Scholar
Roskin, J., Tsoar, H., Porat, N., Blumberg, D.G., 2011b. Palaeoclimate interpretations of Late Pleistocene vegetated linear dune mobilization episodes: evidence from the northwestern Negev dunefield, Israel. Quaternary Science Reviews 30, 33643380.CrossRefGoogle Scholar
Schaetzl, R.J., Bettis, E.A., Crouvi, O., Fitzsimmons, K.E., Grimley, D.A., Hambach, U., Lehmkuhl, F., et al. , 2018. Approaches and challenges to the study of loess—introduction to the LoessFest Special Issue. Quaternary Research 89, 563618.CrossRefGoogle Scholar
Schepanski, K., Tegen, I., Macke, A., 2012. Comparison of satellite based observations of Saharan dust source areas. Remote Sensing of Environment 123, 9097.CrossRefGoogle Scholar
Smalley, I.J., Krinsley, D.H., 1978. Loess deposits associated with deserts. CATENA 5, 5366.CrossRefGoogle Scholar
Smalley, I.J., Vita-Finzi, C., 1968. The formation of fine particles in sandy deserts and the nature of “desert” loess. Journal of Sedimentary Research 38, 766774.Google Scholar
Smalley, I., Marković, S.B., 2019. Controls on the nature of loess particles and the formation of loess deposits. Quaternary International 502, 160164.CrossRefGoogle Scholar
Smith, B.J., Wright, J.S., Whalley, W.B., 1991. Simulated aeolian abrasion of Pannonian sands and its implications for the origins of Hungarian loess. Earth Surface Processes and Landforms 16, 745752.CrossRefGoogle Scholar
Smith, B.J., Wright, J.S., Whalley, W.B., 2002. Sources of non-glacial, loess-size quartz silt and the origins of “desert loess.” Earth-Science Reviews 59, 126.CrossRefGoogle Scholar
Soreghan, G.S., Joo, Y.J., Elwood Madden, M.E., Van Deventer, S.C., 2016. Silt production as a function of climate and lithology under simulated comminution. Quaternary International 399, 218227.CrossRefGoogle Scholar
Stevens, T., Carter, A., Watson, T.P., Vermeesch, P., Andò, S., Bird, A.F., Lu, H., Garzanti, E., Cottam, M.A., Sevastjanova, I., 2013. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quaternary Science Reviews 78, 355368.CrossRefGoogle Scholar
Stokes, S., Horrocks, J., 1998. A reconnaissance survey of the linear dunes and loess plains of northwestern Nigeria: granulometry and geochronology. In: Alsharan, A.S., Glennie, K.W., Whittle, G.L., Kendall, C.G.S.C. (Eds.), Quaternary Deserts and Climatic Change. Balkema, Rotterdam, pp. 165174.Google Scholar
Stuut, J.-B.W., Prins, M.A., Schneider, R.R., Weltje, G.J., Jansen, J.H.F., Postma, G., 2002. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180, 221233.CrossRefGoogle Scholar
Stuut, J.-B., Zabel, M., Ratmeyer, V., Helmke, P., Schefuß, E., Lavik, G., Schneider, R., 2005. Provenance of present-day aeolian dust collected off NW Africa. Journal of Geophysical Research: Atmospheres 110., D04202.CrossRefGoogle Scholar
Sun, D., Chen, F., Bloemendal, J., Su, R., 2003. Seasonal variability of modern dust over the Loess Plateau of China. Journal of Geophysical Research: Atmospheres 108, D21, 4665.CrossRefGoogle Scholar
Sun, J., 2002a. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203, 845859.CrossRefGoogle Scholar
Sun, J., 2002b. Source regions and formation of the loess sediments on the high mountain regions of northwestern China. Quaternary Research 58, 341351.CrossRefGoogle Scholar
Sweeney, M.R., Lu, H.Y., Cui, M.C., Mason, J.A., Feng, H., Xu, Z.W., 2016. Sand dunes as potential sources of dust in northern China. Science China—Earth Sciences 59, 760769.CrossRefGoogle Scholar
Sweeney, M.R., Mason, J.A., 2013. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA. Journal of Geophysical Research: Earth Surface 118, 14601471.Google Scholar
Sweeney, M.R., McDonald, E.V., Etyemezian, V., 2011. Quantifying dust emissions from desert landforms, eastern Mojave Desert, USA. Geomorphology 135, 2134.CrossRefGoogle Scholar
Sweeney, M.R., McDonald, E.V., Markley, C.E., 2013. Alluvial sediment or playas: what is the dominant source of sand and silt in desert soil Av horizons, southwest USA. Journal of Geophysical Research: Earth Surface 118, 257275.Google Scholar
Swet, N., Elperin, T., Kok, J.F., Martin, R.L., Yizhaq, H., Katra, I., 2019. Can active sands generate dust particles by wind-induced processes? Earth and Planetary Science Letters 506, 371380.CrossRefGoogle Scholar
Torre, G., Gaiero, D.M., Cosentino, N.J., Coppo, R., 2020. The paleoclimatic message from the polymodal grain-size distribution of late Pleistocene–early Holocene Pampean loess (Argentina). Aaeolian Research 42, 100563.CrossRefGoogle Scholar
Tripaldi, A., Forman, S.L., 2016. Aeolian depositional phases during the past 50 ka and inferred climate variability for the Pampean Sand Sea, western Pampas, Argentina. Quaternary Science Reviews 139, 7793.CrossRefGoogle Scholar
Tripaldi, A., Zárate, M.A., Brook, G.A., Li, G.-Q., 2011. Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina. Quaternary Research 76, 253263.CrossRefGoogle Scholar
Tsoar, H., Pye, K., 1987. Dust transport and the question of desert loess formation. Sedimentology 34, 139154.CrossRefGoogle Scholar
Újvári, G., Kok, J.F., Varga, G., Kovács, J., 2016. The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews 154, 247278.CrossRefGoogle Scholar
Vandenberghe, J., 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Science Reviews 121, 1830.CrossRefGoogle Scholar
Wang, Z., Wu, Y., Tan, L., Fu, T., Wen, Y., Li, D., 2019. Provenance studies of aeolian sand in Mu Us Desert based on heavy-mineral analysis. Aeolian Research 40, 1522.CrossRefGoogle Scholar
Wen, Y., Wu, Y., Tan, L., Li, D., Fu, T., 2019. End-member modeling of the grain size record of loess in the Mu Us Desert and implications for dust sources. Quaternary International 532, 8797.CrossRefGoogle Scholar
Werner, B.T., Haff, P.K., 1988. The impact process in aeolian saltation: two-dimensional simulations. Sedimentology 35, 189196.CrossRefGoogle Scholar
Whalley, W.B., Marshall, J.R., Smith, B.J., 1982. Origin of desert loess from some experimental observations. Nature 300, 433435.CrossRefGoogle Scholar
Whalley, W.B., Smith, B.J., McAlister, J.J., Edwards, A.J., 1987. Aeolian abrasion of quartz particles and the production of silt-size fragments: preliminary results. In: Frostick, L.E., Reid, I. (Eds.), Desert Sediments: Ancient and Modern. Blackwell Scientific, Oxford, pp. 129138.Google Scholar
Wolfe, S.A., Nickling, W.G., 1993. The protective role of sparse vegetation in wind erosion. Progress in Physical Geography 17, 5068.CrossRefGoogle Scholar
Wright, J., 2001a. Making loess-sized quartz silt: data from laboratory simulations and implications for sediment transport pathways and the formation of “desert” loess deposits associated with the Sahara. Quaternary International 76–77, 719.CrossRefGoogle Scholar
Wright, J.S., 2001b. “Desert” loess versus “glacial” loess: quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology 36, 231256.CrossRefGoogle Scholar
Wright, J., Smith, B., Whalley, B., 1998. Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology 23, 1534.CrossRefGoogle Scholar
Xu, Z., Stevens, T., Yi, S., Mason, J.A., Lu, H., 2018. Seesaw pattern in dust accumulation on the Chinese Loess Plateau forced by late glacial shifts in the East Asian monsoon. Geology 46, 871874.CrossRefGoogle Scholar
Yaalon, D.H., 1969. Origin of desert loess. In: Proceedings 8th INQUA Congress, Paris, Etudes sur le Quaternaire dans le Monde, 2, p.755.Google Scholar
Zárate, M.A., Tripaldi, A., 2012. The aeolian system of central Argentina. Aeolian Research 3, 401417.CrossRefGoogle Scholar
Zárate, M., Blasi, A., 1993. Late Pleistocene–Holocene aeolian deposits of the southern Buenos Aires province, Argentina: a preliminary model. Quaternary International 17, 1520.CrossRefGoogle Scholar