Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:23:37.713Z Has data issue: false hasContentIssue false

Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr

Published online by Cambridge University Press:  20 January 2017

William J. Fletcher*
Affiliation:
Ecole Pratique des Hautes Etudes, UMR 5805 CNRS EPOC, Université Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France
Maria Fernanda Sánchez Goñi
Affiliation:
Ecole Pratique des Hautes Etudes, UMR 5805 CNRS EPOC, Université Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France
*
*Corresponding author. Fax: +33 5 56 84 08 48. E-mail address:w.fletcher@epoc.u-bordeaux1.fr (W.J. Fletcher).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-resolution pollen analysis of Alborán Sea core MD95-2043 provides a 48-ka continuous vegetation record that can be directly correlated with sea surface and deep-water changes. The reliability of this record is supported by comparison with that of Padul (Sierra Nevada, Spain). Marine Isotope Stage (MIS) 3 was characterised by fluctuations in Quercus forest cover in response to Dansgaard-Oeschger climate variability. MIS 2 was characterised by the dominance of semi-desert vegetation. Despite overall dry and cold conditions during MIS 2, Heinrich events (HEs) 2 and 1 were distinguished from the last glacial maximum by more intensely arid conditions. Taxon-specific vegetation responses to a tripartite climatic structure within the HEs are observed. In MIS 1, the Bölling-Allerød was marked by rapid afforestation, while a re-expansion of semi-desert environments occurred during the Younger Dryas. The maximum development of mixed Quercus forest occurred between 11.7 and 5.4 cal ka BP, with forest decline since 5.4 cal ka BP. On orbital timescales, a long-term expansion of semi-desert vegetation from MIS 3 into MIS 2 reflects global ice-volume trends, while Holocene arboreal decline reflects summer insolation decrease. The influence of precession on the amplitude of forest development and vegetation composition is also detected.

Type
Original Articles
Copyright
University of Washington

References

Arévalo Barroso, A., (1992). Atlas Nacional de España, Sección II, Grupo 9, Climatología. Madrid,. Ministerio de Obras Públicas y Transportes, Dirección General del Instituto Geográfico Nacional. Google Scholar
Baldi, M., Meneguzzo, F., Dalu, G.A., Maracchi, G., Pasqui, M., Capecchi, V., Crisci, A., Piani, F., (2004). Guinea GULF SST and Mediterranean summer climate: analysis of the interannual variability. Bulletin of the American Meteorological Society 41674187.Google Scholar
Benabid, A., (2000). Flore et ecosystems du Maroc. Editions Ibis Press, Paris.Google Scholar
Benito Garzón, M., Sánchez de Dios, R., Sainz Ollero, H., (2007). Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30, 120134.Google Scholar
Bennett, K.D., Willis, K.J., (2000). Effect of global atmospheric carbon dioxide on glacial–interglacial vegetation change. Global Ecology and Biogeography 9, 355361.CrossRefGoogle Scholar
Berger, A., (1978). Long-term variations of caloric insolation resulting from the earth's orbital elements. Quaternary Research 9, 139167.CrossRefGoogle Scholar
Bethoux, J.P., (1979). Budgets of the Mediterranean Sea. Their dependence on the local climate and on the characteristics of the Atlantic waters. Oceanologica Acta 2, 157163.Google Scholar
Bout-Roumazeilles, V., Combourieu Nebout, N., Peyron, O., Cortijo, E., Landais, A., Masson-Delmotte, V., (2007). Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr BP North Atlantic cold events. Quaternary Science Reviews Volume 26, 31973215.CrossRefGoogle Scholar
Brewer, S., Cheddadi, R., de Beaulieu, J.-L., Reille, M. Data contributors(2002). The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management 156, 2748.CrossRefGoogle Scholar
Birks, H.J.B., (1998). Numerical tools in palaeolimnology — Progress, potentialities, and problems. Journal of Paleolimnology 20, 307332.Google Scholar
Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A., Shackleton, N.J., (1999). Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea temperatures. Paleoceanography 14, 698705.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Sierro, F.J., Shackleton, N.J., Canals, M., (2000). Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings. Earth and Planetary Science Letters 183, 417429.Google Scholar
Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N., Schönfeld, J., Zahn, R., (2001). Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the northern hemisphere climatic changes. Paleoceanography 16, 4052.Google Scholar
Cacho, I., Grimalt, J.O., Canals, M., (2002). Response of the Western Mediterranean Sea to rapid climate variability during the last 50,000 years: a molecular biomarker approach. Journal of Marine Systems 33–34, 253272.CrossRefGoogle Scholar
Cacho, I., Shackleton, N., Elderfield, H., Sierro, F.J., Grimalt, J.O., (2006). Glacial rapid variability in deep-water temperature and d18O from the Western Mediterranean Sea. Quaternary Science Reviews 25, 32943311.Google Scholar
Carrión, J.S., (2002). Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, 20472066.CrossRefGoogle Scholar
Carrión, J.S., Munuera, M., Dupré, M., Andrade, A., (2001). Abrupt vegetation changes in the Segura Mountains of southern Spain throughout the Holocene. Journal of Ecology 89, 783797.Google Scholar
Carrión, J.S., Sánchez-Gómez, P., Mota, J.F., Yll, R., Chaín, C., (2003). Holocene vegetation dynamics, fire and grazing in the Sierra de Gádor, southern Spain. The Holocene 13, 839849.CrossRefGoogle Scholar
Carrión, J.S., Yll, E.I., Willis, K.J., Sánchez, P., (2004). Holocene forest history of the eastern plateaux in the Segura mountains (Murcia, southeastern Spain). Review of Palaeobotany and Palynology 132, 219236.Google Scholar
Carrión, J.S., Fuentes, N., González-Sampériz, P., Sánchez Quirante, L., Finlayson, J.C., Fernández, S., Andrade, A., (2007). Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quaternary Science Reviews 26, 14551475.Google Scholar
Cleveland, W.S., (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74, 829836.Google Scholar
Colmenero-Hidalgo, E., Flores, J.-A., Sierro, F.J., Bárcena, M.A., Löwemark, L., Schönfeld, J., Grimalt, J.O., (2004). Ocean surface water response to short-term climate changes revealed by coccolithophores from the Gulf of Cadiz (NE Atlantic) and Alboran Sea (W Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology 205, 317336.Google Scholar
Combourieu Nebout, N., Turon, J.-L., Zahn, R., Capotondi, L., Londeix, L., Pahnke, K., (2002). Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y.. Geology 30, 863866.Google Scholar
Cowling, S.A., Sykes, M.T., (1999). Physiological significance of low atmospheric CO2 for plant-climate interactions. Quaternary Research 52, 237242.CrossRefGoogle Scholar
de Abreu, L., Shackleton, N.J., Schönfeld, J., Hall, M., Chapman, M.R., (2003). Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Marine Geology 196, 120.Google Scholar
Elliot, M., Labeyrie, L., Dokken, T., Manthé, S., (2001). Coherent patterns of ice-rafted debris deposits in the Nordic regions during the last glacial (10–60 ka). Earth and Planetary Science Letters 194, 151163.CrossRefGoogle Scholar
Fabrés, J., Calafat, A., Sanchez-Vidal, A., Canals, M., Heussner, S., (2001). Composition and spatial variability of particle fluxes in the Western Alboran Gyre, Mediterranean Sea. Journal of Marine Systems 33–34, 431456.Google Scholar
Fernández, S., Fuentes, N., Carrión, J.S., González-Sampériz, P., Montoya, E., Gil, G., Vega-Toscano, Riquelme, J., (2007). The Holocene and Upper Pleistocene pollen sequence of Carihuela Cave, southern Spain. Geobios 40, 7590.Google Scholar
Fletcher, W., Boski, T., Moura, D., (2007). Palynological evidence for environmental and climatic change in the lower Guadiana valley (Portugal) during the last 13,000 years. The Holocene 17, 479492.CrossRefGoogle Scholar
Follieri, M., Magri, D., Sadori, L., (1988). 250,000 year pollen record from Valle di Castiglione (Roma). Pollen et Spores 30, 329356.Google Scholar
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A., Grimalt, J.O., (2008). Evidence of abrupt changes in Western Mediterranean Deep Water circulation during the last 50 kyr: a high-resolution marine record from the Balearic Sea. Quaternary International 181, 88104.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.Google Scholar
Heusser, L.E., Balsam, W.L., (1977). Pollen distribution in the northeast Pacific Ocean. Quaternary Research 7, 4562.CrossRefGoogle Scholar
Hooghiemstra, H., Lézine, A.-M., Leroy, S.A.G., Dupont, L., Marret, F., (2006). Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International 148, 2944.Google Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). Marine04 marine radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46, 10591086.CrossRefGoogle Scholar
Kageyama, M., Combourieu Nebout, N., Sepulchre, P., Peyron, O., Krinner, G., Ramstein, G., Cazet, J.-P., (2005). The Last Glacial Maximum and Heinrich Event 1 in terms of climate and vegetation around the Alboran Sea: a preliminary model-data comparison. Comptes Rendus Geosciences 337, 983992.Google Scholar
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., Weinelt, M., (2005). Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quaternary Science Reviews 24, 813819.CrossRefGoogle Scholar
Lamb, H., van der Kaars, S., (1995). Vegetational response to Holocene climatic change: pollen and palaeolimnological data from the Middle Atlas, Morocco. The Holocene 5, 400408.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., (2004). A long-term astronomical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285.CrossRefGoogle Scholar
López de Heredia, U., Carrión, J.S., Jiménez, P., Collada, C., Gil, L., (2007). Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. Journal of Biogeography 34, 15051517.CrossRefGoogle Scholar
Magri, D., Parra, I., (2002). Late Quaternary western Mediterranean pollen records and African winds. Earth and Planetary Science Letters 200, 401408.CrossRefGoogle Scholar
Magri, D., Tzedakis, P.C., (2000). Orbital signatures and long-term vegetation patterns in the Mediterranean. Quaternary International 73/74, 6978.CrossRefGoogle Scholar
Maher, L.J., (1972). Nomograms for computing 95% limits of pollen data. Review of Palynology and Palaeobotany 13, 8593.Google Scholar
Marchal, O., Cacho, I., Stocker, T.F., Grimalt, J.O., Calvo, E., Martrat, B., Shackleton, N., Vautravers, M., Cortijo, E., van Kreveld, S., Andersson, C., Ko, N., Chapman, M., Sbaffi, L., Duplessy, J.-C., Sarnthein, M., Turon, J.-L., Duprat, J., Jansen, E., (2002). Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quaternary Science Reviews 21, 455483.Google Scholar
Margari, V., Tzedakis, P.C., Shackleton, N.J., Vautravers, M., (2007). Vegetation response in SW Iberia to abrupt climate change during MIS 6: direct land-sea comparisons. Quaternary International 167–168, Supplement 1 267268.Google Scholar
Meijer, P.Th., Tuenter, E., (2007). The effect of precession-induced changes in the Mediterranean freshwater budget on circulation at shallow and intermediate depth. Journal of Marine Systems 68, 349365.Google Scholar
Millot, C., (1999). Circulation in the Western Mediterranean Sea. Journal of Marine Systems 20, 423442.Google Scholar
Mix, A.C., Bard, E., Schneider, R., (2001). Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.CrossRefGoogle Scholar
Moreno, A., Cacho, I., Canals, M., Prins, M.A., Sánchez -Goni, M.-F., Grimalt, J.O., Weltje, G.J., (2002). Saharan dust transport and high-latitude glacial climatic variability: the Alboran Sea record. Quaternary Research 58, 318328.CrossRefGoogle Scholar
Mudie, P.J., Rochon, A., Aksu, A.E., (2002). Pollen stratigraphy of Late Quaternary cores from Marmara Sea: land-sea correlation and paleoclimatic history. Marine Geology 190, 233260.Google Scholar
Mudie, P.J., McCarthy, F.M., (2006). Marine palynology: potentials for onshore-offshore correlation of Pleistocene-Holocene records. Transactions of the Royal Society of South Africa 61, 139157.Google Scholar
Naughton, F., Sánchez Goni, M.F., Desprat, S., Turon, J.L., Duprat, J., Malaizé, B., Joli, C., Cortijo, E., Drago, T., Freitas, M.C., (2007a). Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Marine Micropaleontology 62, 91114.CrossRefGoogle Scholar
Naughton, F., Sánchez Goñi, M.F., Turon, J.-L., Duprat, J., Cortijo, E., Malaizé, B., Joli, C., Bard, E. and Rostek, F., (2007b). Wet to dry climatic trend in north western Iberia within Heinrich events.. IX International Conference on Paleoceanography (ICP9), September 2007, Shanghai (China).Google Scholar
Olalde, M., Herrán, A., Espinel, S., Goicoechea, P.G., (2002). White oaks phylogeography in the Iberian Peninsula. Forest Ecology and Management 156, 89102.Google Scholar
Pantaléon Cano, J., Yll, E.I., Pérez-Obiol, R., Roure, J.M., (2003). Palynological evidence for vegetational history in semi-arid areas of the western Mediterranean (Almería, Spain). The Holocene 13, 109119.CrossRefGoogle Scholar
Peinado Lorca, M., Rivas-Martinez, S., (1987). La vegetación de España.. Universidad de Alcala de Henares, Secretaria general, Servicio de publicaciones. Google Scholar
Pérez-Folgado, M., Sierro, F.J., Flores, J.A., Cacho, I., Grimalt, J.O., Zahn, R., Shackleton, N., (2003). Western Mediterranean planktonic foraminifera events and millennial climatic variability during the last 70 kyr. Marine Micropalaeontology 48, 4970.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Polley, H.W., Johnson, H.B., Marino, B.D., Mayeux, H.S., (1993). Increase in C3 plant water-use efficiency and biomass over Glacial to present CO2 concentrations. Nature 361, 6164.Google Scholar
Pons, A., Reille, M., (1988). The Holocene and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66, 243263.CrossRefGoogle Scholar
Quezel, P., (2002). Réflexions sur l'évolution de la flore et de la végétation au Maghreb méditerranéen. Ibis Press, Paris.Google Scholar
Reille, M., (1977). Contribution pollenanalytique à l'histoire holocène de la végétation des montagnes du Rif (Maroc septentrional). Recherches Françaises sur le Quaternaire 1, 5376.Google Scholar
Raicich, F., Pinardi, N., Navarra, A., (2003). Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean. International Journal of Climatology 23, 173186.CrossRefGoogle Scholar
Rodwell, M.J., Hoskins, B.J., (1996). Monsoons and the dynamics of deserts. Quarterly Journal of the Royal Meteorological Society 122, 13851404.Google Scholar
Rodwell, M.J., Hoskins, B.J., (2001). Subtropical anticyclones and summer monsoons. Journal of Climate 14, 31923211.2.0.CO;2>CrossRefGoogle Scholar
Roucoux, K.H., de Abreu, L., Shackleton, N.J., Tzedakis, P.C., (2005). The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews 24, 16371653.CrossRefGoogle Scholar
Roucoux, K.H., Tzedakis, P.C., de Abreu, L., Shackleton, N.J., (2006). Climate and vegetation changes 180,000 to 345,000 years ago recorded in a deep-sea core off Portugal. Earth and Planetary Science Letters 249, 307325.Google Scholar
Ruddiman, W.F., (2006). Orbital changes and climate. Quaternary Science Reviews 25, 30923112.Google Scholar
Salamani, M., (1993). Premières données paléophytogéographiques du Cèdre de l'Atlas (Cedrus atlantica) dans la région de Grande Kabylie (NE Algérie). Palynosciences 2, 147155.Google Scholar
Sánchez Goni, M.F., Turon, J.L., Eynaud, F., Gendreau, S., (2000). European climatic response to millenial-scale changes in the atmosphere-ocean system during the Last Glacial period. Quaternary Research 54, 394403.Google Scholar
Sánchez Goñi, M.F., Cacho, I., Turon, J.-L., Guiot, J., Sierro, F.J., Peypouquet, J.-P., Grimalt, J.O., Shackleton, N.J., (2002). Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, 95105.Google Scholar
Sánchez Goñi, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., Duprat, J., (2008). Evidence for major sources of CH4 in northern mid-low latitudes during the last glacial. Quaternary Science Reviews 27, 11361151.Google Scholar
Shackleton, N.J., Hall, M.A., Vincent, E., (2000). Phase relationships between millennial scale events 64,000–24,000 years ago. Paleoceanography 15, 565569.Google Scholar
Sierro, F.J., Hodell, D.A., Curtis, J.H., Flores, J.A., Reguera, I., Colmenero-Hidalgo, E., Bárcena, M.A., Grimalt, J.O., Cacho, I., Frigola, J., Canals, M., (2005). Impact of iceberg melting on Mediterranean thermohaline circulation during Heinrich events. Paleoceanography 20, PA2019 10.1029/2004PA001051.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Tuenter, E., Weber, S.L., Hilgen, F.J., Lourens, L.J., (2003). The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Global and Planetary Change 36, 219235.Google Scholar
Turon, J.L., (1984). Le paynoplancton dans l'environnement actuel de l' Atlantique nord-oriental.. Evolution climatique et hydrologique depuis le dernier maximum glaciaire.PhD thesis, Bordeaux 1 University, France.Google Scholar
Tzedakis, P.C., (2005). Towards an understanding of the response of southern European vegetation to orbital and suborbital climate variability. Quaternary Science Reviews 24, 15851599.Google Scholar
Tzedakis, P.C., (2007). Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Science Reviews 26, 20422066.Google Scholar
Voelker, A.H.L., Lebreiro, S.M., Schonfeld, J., Cacho, I., Erlenkeuser, H., Abrantes, F., (2006). Mediterranean outflow strengthening during northern hemisphere coolings: a salt source for the glacial Atlantic? Earth and Planetary Science Letters 245, 3955.Google Scholar
Ziv, B., Saaroni, H., Alpert, P., (2004). Factors governing the summer regime of the eastern Mediterraneaen. International Journal of Climatology 24, 18591871.CrossRefGoogle Scholar