Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T11:26:02.510Z Has data issue: false hasContentIssue false

Origin, weathering, and geochemical composition of loess in southwestern Hungary

Published online by Cambridge University Press:  20 January 2017

Gábor Újvári*
Affiliation:
Geodetic and Geophysical Research Institute, Hungarian Academy of Sciences, Csatkai E. u. 6-8., H-9400 Sopron, Hungary
Andrea Varga
Affiliation:
Department of Petrology and Geochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c., H-1117 Budapest, Hungary
Zsuzsanna Balogh-Brunstad
Affiliation:
School of Earth and Environmental Sciences, Washington State University, Pullman, WA 99164-2812, USA
*
*Corresponding author. Fax: +36 99 508 355.E-mail address:ujvari@ggki.hu (G. Újvári).

Abstract

Loess geochemistry generally reflects paleo-weathering conditions and it can be used to determine the average composition of the upper continental crust (UCC). In this study, major and trace element concentrations were analyzed on loess samples from southwestern Hungary to determine the factors influencing their chemical compositions and to propose new average loess compositions. All studied loess samples had nearly uniform chemical composition, suggesting similar alteration history of these deposits. Chemical Index of Alteration values (58–69) suggested a weak to moderate degree of weathering in a felsic source area. Typical non-steady state weathering conditions were shown on the Al2O3–CaO+Na2O–K2O patterns, indicating active tectonism of the Alpine–Carpathian system during the Pleistocene. Whole-rock element budgets were controlled by heavy minerals derived from a felsic magmatic or reworked sedimentary provenance. Geochemical parameters indicated that dust particles must have been recycled and well homogenized during fluvial and eolian transport processes.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamova, M., (1991). Geochemistry of flysch sediments and its application in geological interpretations. Geologica Carpathica 42, 147156.Google Scholar
Amorosi, A., Centineo, M.C., Dinelli, E., Lucchini, F., Tateo, F., (2002). Geochemical and mineralogical variations as indicators of provenance changes in late quaternary deposits of SE Po Plain. Sedimentary Geology 151, 273292.CrossRefGoogle Scholar
Bock, B., McLennan, S.M., Hanson, G.N., (1998). Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology 45, 635655.CrossRefGoogle Scholar
Bradák, B., (2006). Meghatározható-e a paleoszélirány löszfeltárásokból a mágneses szuszceptibilitás anizotrópia (AMS) vizsgálatával? Válaszok Bulla Bélának. Földrajzi közlemények 130, 185198.,(in Hungarian with English abstract).Google Scholar
Bradák, B., in press. Application of anisotropy of magnetic susceptibility (AMS) for the determination of paleo-wind directions and paleo-environment during the accumulation period of Bag Tephra, Hungary. Quaternary International. DOI:10.1016/j.quaint.2007.11.005.Google Scholar
Broska, I., Williams, C.T., Uher, P., Konečný, P., Leichmann, J., (2002). The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chemical Geology 205, 115.CrossRefGoogle Scholar
Condie, K.C., (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology 104, 137.CrossRefGoogle Scholar
Csontos, L., Nagymarosy, A., Horváth, F., Kovács, M., (1992). Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics 208, 221241.CrossRefGoogle Scholar
Csontos, L., Benkovics, L., Bergerat, F., Mansy, J., Wórum, G., (2002). Tertiary deformation history from seismic section study and fault analysis in a former European Tethyan margin (the Mecsek–Villány area, SW Hungary). Tectonophysics 357, 81102.Google Scholar
Ding, Z.L., Sun, J.M., Yang, S.L., Liu, T.S., (2001). Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta 65, 901913.CrossRefGoogle Scholar
von Eynatten, H., (2003). Petrography and chemistry of sandstones from the Swiss Molasse Basin: an archive of the Oligocene and Miocene evolution of the Central Alps. Sedimentology 50, 703724.CrossRefGoogle Scholar
Fedo, C.M., Nesbitt, H.W., Young, G.M., (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921924.Google Scholar
Floyd, P.A., Winchester, J.A., Park, R.G., (1989). Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch N.W. Scotland. Precambrian Research 45, 203214.CrossRefGoogle Scholar
Gallet, S., Jahn, B., Torii, M., (1996). Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chemical Geology 133, 6788.Google Scholar
Gallet, S., Jahn, B., Van Vliet Lanoë, B., Dia, A., Rossello, E., (1998). Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156, 157172.Google Scholar
Garrels, R.M., Mackenzie, F.T., (1971). Evolution of Sedimentary Rocks. Norton & Company, New York., 397.Google Scholar
Hassan, S., Ishiga, H., Roser, B.P., Dozen, K., Naka, T., (1999). Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin. Chemical Geology 158, 293314.Google Scholar
Hädrich, F., (1975). Zur Methodik der Lössdifferenzierung auf der Grundlage der Carbonatverteilung. Eiszeitalter und Gegenwart 26, 95117.Google Scholar
Hiscott, R.N., (1984). Ophiolitic source rocks for Taconic-age flysch: trace-element evidence. GSA Bulletin 95, 12611267.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, H.W., (1943). The glacial anticyclones and the European continental glacier. American Journal of Science 241, 333336.CrossRefGoogle Scholar
Horváth, F., Cloetingh, S., (1996). Stress-induced late-stage subsidence anomalies in the Pannonian Basin. Tectonophysics 266, 287300.CrossRefGoogle Scholar
Hum, L., (1998a). Geochemical investigations of the Dunaszekcső loess-paleosoil sequence. Acta Mineralogica-Petrographica (Szeged) 39, 139150.Google Scholar
Hum, L.,. (1998b). Délkelet-Dunántúli lösz-paleotalaj sorozatok keletkezésének rekonstrukciója üledéktani, geokémiai és őslénytani vizsgálatok alapján. Ph.D. Thesis, József Attila University, , Szeged., 140 p (in Hungarian with English summary).Google Scholar
Hum, L., (2002). Délkelet-dunántúli löszösszletek ásványos és geokémiai jellegei és ezek eredete. Földtani Közlöny 132, 117132.,(különszám, in Hungarian with English abstract).Google Scholar
Hum, L., Fényes, J., (1995). The geochemical characteristics of loesses and paleosols in the South-Eastern Transdanube (Hungary). Acta Mineralogica-Petrographica (Szeged) 36, 89100.Google Scholar
Jahn, B., Gallet, S., Han, J., (2001). Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology 178, 7194.Google Scholar
Jámbor, Á., (2002). A magyarországi pleisztocén éleskavics előfordulások és földtani jelentőségük. Földtani Közlöny 132, 101116.,(különszám, in Hungarian with English summary).Google Scholar
Johnson, D.M., Hooper, P.R., Conrey, R.M., (1999). XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Advances in X-ray Analysis 41, 843867.Google Scholar
Lautridou, J.P., Sommé, J., Jamagne, M., (1984). Sedimentological, mineralogical and geochemical characteristics of the loesses of North-West France. Pécsi, M., Lithology and Stratigraphy of Loess and Paleosols. Geographical Research Institute of the Hungarian Academy of Sciences, Budapest. 121132.Google Scholar
McLennan, S.M., (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Lipin, B.R., McKay, G.A., Geochemistry and Mineralogy of Rare Earth Elements. MSA, Reviews in Mineralogy 21, 169200.Google Scholar
McLennan, S.M., (1993). Weathering and global denudation. Journal of Geology 101, 295303.CrossRefGoogle Scholar
McLennan, S.M., (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, 24 2000GC000109.Google Scholar
McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., (1993). Geochemical Approaches to Sedimentation, Provenance and Tectonics. Johnsson, M.J., Basu, A., Processes Controlling the Composition of Clastic Sediments, Geological Society of America Special Paper 284, 2140.CrossRefGoogle Scholar
Meyer, H.-H., Kottmeier, Ch., (1989). The atmospheric circulation in Europe during the Weichselian Pleniglacial — as derived from palaeowind indicators and model simulations. Eiszeitalter und Gegenwart 39, 1018.,(in German with English summary).Google Scholar
Mikes, T., Dunkl, I., Frisch, W., von Eynatten, H., (2006). Geochemistry of Eocene flysch sandstones in the NW External Dinarides. Acta Geologica Hungarica 49, 103124.CrossRefGoogle Scholar
Nesbitt, H.W., Young, G.M., (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715717.Google Scholar
Nesbitt, H.W., Young, G.M., (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48, 15231534.CrossRefGoogle Scholar
Nesbitt, H.W., Young, G.M., (1989). Formation and diagenesis of weathering profiles. Journal of Geology 97, 129147.Google Scholar
Nesbitt, H.W., Fedo, C.M., Young, G.M., (1997). Quartz and feldspar stability, steady and nonsteady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology 105, 173191.Google Scholar
Pécsi, M., (1967). A löszfeltárások üledékeinek genetikai osztályozása a Kárpát-medencében. Földrajzi Értesítő 16, 118.,(in Hungarian).Google Scholar
Pécsi, M., (1990). Loess is not just the accumulation of dust. Quaternary International 7/8, 121.Google Scholar
Pécsi, M., (1993). Loess and the Quaternary. Akadémiai Kiadó, Budapest., 375.Google Scholar
Pécsi, M., (1995). Loess stratigraphy and Quaternary climatic change. Pécsi, M., Schweitzer, F., Concept of loess, loess-paleosol stratigraphy. Loess in Form 3. 2330.Google Scholar
Pécsi-Donáth, É., (1985). On the mineralogical and pedological properties of the younger loess in Hungary. Pécsi, M., Loess and the Quaternary. Akadémiai Kiadó, Budapest. 93104.Google Scholar
Pouclet, A., Horváth, E., Gábris, Gy., Juvigné, E., (1999). The Bag Tephra, a widespread tephrochronological marker in Middle Europe: chemical and mineralogical investigations. Bulletin of Volcanology 60, 265272.Google Scholar
Preston, J., Hartley, A., Hole, M., Buck, S., Bond, J., Mange, M., Still, J., (1998). Integrated whole-rock trace element geochemistry and heavy mineral chemistry studies: aids to the correlation of continental red-bed reservoirs in the Beryl Field, UK North Sea. Petroleum Geoscience 4, 716.Google Scholar
Pye, K., (1983). Grain surface textures and carbonate content of late Pleistocene loess from West Germany and Poland. Journal of Sedimentary Petrology 53, 973980.Google Scholar
Roddaz, M., Viers, J., Brusset, S., Baby, P., Boucayrand, C., Hérail, G., (2006). Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology 226, 3165.Google Scholar
Rónai, A., (1985). The Quaternary of the Great Hungarian Plain. Pécsi, M., Loess and the Quaternary. Akadémiai Kiadó, Budapest., 5163.Google Scholar
Schellenberger, A., Veit, H., (2006). Pedostratigraphy and pedological and geochemical characterization of Las Carreras loess–paleosol sequence, Valle de Tafi, NW-Argentina. Quaternary Science Reviews 25, 811831.Google Scholar
Schnetger, B., (1992). Chemical composition of loess from a local and worldwide view. Neues Jahrbuch für Mineralogie Monatshefte 1, 2947.Google Scholar
Shackleton, N.J., Berger, A., Peltier, W.R., (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh - Earth Sciences 81, 251261.CrossRefGoogle Scholar
Smalley, I.J., Leach, J.A., (1978). The origin and distribution of loess in the Danube Basin and associated regions of East-Central Europe — a review. Sedimentary Geology 21, 126.CrossRefGoogle Scholar
Smith, B.J., Wright, J.S., Whalley, W.B., (1991). Simulated aeolian abrasion of Pannonian sands and its applications for the origins of the Hungarian loess. Earth Surface Processes and Landforms 16, 745752.CrossRefGoogle Scholar
Sun, J., (2002). Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203, 845859.Google Scholar
Sümeghy, J., (1953). Medencéink pliocén és pleisztocén rétegtani kérdései. A MÁFI évi jelentése az 83109.,(1951. évről, in Hungarian).Google Scholar
Székely, B., Reinecker, J., Dunkl, I., Frisch, W., Kuhlemann, J., (2002). Neotectonic movements and their geomorphic response as reflected in surface parameters and stress patterns in the Eastern Alps. Cloetingh, S.A.P.L., Horváth, F., Bada, G., Lankreijer, A.C., Neotectonics and Surface Processes: The Pannonian Basin and Alpine/Carpathian System. EGU Stephan Mueller Special Publication Series 3, 149166.Google Scholar
Taylor, S.R., McLennan, S.M., (1985). The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications Ltd., 312.Google Scholar
Taylor, S.R., McLennan, S.M., McCulloch, M.T., (1983). Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica et Cosmochimica Acta 47, 18971905.Google Scholar
Tripathi, J.K., Rajamani, V., (1999). Geochemistry of the loessic sediments on Delhi ridge, eastern Thar desert, Rajasthan: implications for exogenic processes. Chemical Geology 155, 265278.CrossRefGoogle Scholar
Újvári, G., (2005). Dél-baranyai lösz-paleotalaj sorozatok szedimentológiai, geokémiai és malakológiai vizsgálata. Ph.D. Thesis, University of Pécs, , 220p. (in Hungarian with English abstract).Google Scholar
Wright, J.S., (2001). "Desert" loess versus "glacial" loess: quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology 36, 231256.CrossRefGoogle Scholar
Wright, J.S., Smith, B., Whalley, B., (1998). Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology 23, 1534.Google Scholar
Zimmermann, U., Bahlburg, H., (2003). Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology 50, 10791104.Google Scholar