Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-04T00:54:40.403Z Has data issue: false hasContentIssue false

OSL dating of glacial outburst flood deposits in NE Poland and their bleaching problem inferred from the landform-sediment associations and regional context

Published online by Cambridge University Press:  31 January 2025

Edyta Kalińska*
Affiliation:
Nicolaus Copernicus University in Toruń, Faculty of Earth Sciences and Spatial Management, Lwowska 1, 87-100 Toruń, Poland
Piotr Weckwerth
Affiliation:
Nicolaus Copernicus University in Toruń, Faculty of Earth Sciences and Spatial Management, Lwowska 1, 87-100 Toruń, Poland
Helena Alexanderson
Affiliation:
Lund University, Department of Geology, Sölvegatan 12, 223 62 Lund, Sweden
Jan A. Piotrowski
Affiliation:
Nicolaus Copernicus University in Toruń, Faculty of Earth Sciences and Spatial Management, Lwowska 1, 87-100 Toruń, Poland Aarhus University, Department of Geoscience, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
Wojciech Wysota
Affiliation:
Nicolaus Copernicus University in Toruń, Faculty of Earth Sciences and Spatial Management, Lwowska 1, 87-100 Toruń, Poland
*
Corresponding author: E. Kalińska; Email: edyta.kalinska@umk.pl

Abstract

A continental-type glacial flood termed the Suwałki megafloods took place in NE Poland during the last glaciation and significantly transformed the proglacial area. This study aims, for the first time, to establish the chronology of this flood. Twenty-two sediment samples from two meltwater spillways were dated by optically stimulated luminescence. Sixteen ages from the flood megadunes are between 83 ± 11 ka and 16.9 ± 0.9 ka, whereas six ages from the outwash tracks range from 71.5 ± 9.9 ka to 20.3 ± 2.5 ka. Three dates from the uppermost part of the megadune sedimentary successions are 16.9 ± 0.9 ka, 17.9 ± 1.9 ka, and 18.8 ± 1.3 ka, and they may mark the likely true age of the Suwałki megafloods. We found no consistent relationships between the sedimentary structures and bleaching characteristics suggesting that the two are largely independent, contrary to what is typically assumed for fluvial deposits. Similarly, the transport distance from the ice margin did not exert a consistent influence on the sediment bleaching characteristics. A new hypothesis considers the stage of flooding to have a relevant impact on sediment bleaching: sediment deposited during the flood waning is well bleached and has a high potential for constraining the flood age.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agatova, A.R., Nepop, R.K., 2017. Pleistocene glaciations of the SE Altai, Russia, based on geomorphological data and absolute dating of glacial deposits in Chagan reference section. Geochronometria 44, 4965.CrossRefGoogle Scholar
Alexander, J., Bridge, J.S., Cheel, R.J., Leclair, S.F., 2001. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology 48, 133152.CrossRefGoogle Scholar
Alexanderson, H., Murray, A.S., 2012. Problems and potential of OSL dating Weichselian and Holocene sediments in Sweden. Quaternary Science Reviews 44, 3750.CrossRefGoogle Scholar
Arnold, L.J., Roberts, R.G., 2009. Stochastic modelling of multi-grain equivalent dose (D e) distributions: implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204230.CrossRefGoogle Scholar
Arnold, L.J., Roberts, R.G., 2011. Paper I – Optically stimulated luminescence (OSL) dating of perennially frozen deposits in north-central Siberia: OSL characteristics of quartz grains and methodological considerations regarding their suitability for dating. Boreas 40, 389416.CrossRefGoogle Scholar
Baker, V.R., 2020. Global megaflood paleohydrology. In: Herget, J., Fontana, A. (Eds.) Palaeohydrology . Springer, Cham, pp. 328.CrossRefGoogle Scholar
Beerten, K., Verbeeck, K., Laloy, E., Vanacker, V., Vandenberghe, D., Christl, M., De Grave, J., Wouters, L., 2020. Electron spin resonance (ESR), optically stimulated luminescence (OSL) and terrestrial cosmogenic radionuclide (TCN) dating of quartz from a Plio-Pleistocene sandy formation in the Campine area, NE Belgium. Quaternary International 556, 144158.CrossRefGoogle Scholar
Bejarano-Arias, I., Wees, R.M.J.V., Alexanderson, H., Janočko, J., Perić, Z.M., 2023. Testing the applicability of quartz and feldspar for luminescence dating of Pleistocene alluvial sediments in the Tatra Mountain foothills, Slovakia. Geochronometria 50, 5080.CrossRefGoogle Scholar
Ber, A., 1974. Czwartorzęd Pojezierza Suwalskiego. Biuletyn Państwowego Instytutu Geologicznego 269, 23106.Google Scholar
Ber, A., 1982. Marginal zones and deglaciation during the north-polish glaciation in the Suwałki-Augustów Lakeland. Biuletyn Instytutu Geologicznego 342, 7189.Google Scholar
Ber, A., 2000. Plejstocen Polski północno-wschodniej w nawiązaniu do głębszego podłoża i obszarów sąsiednich. Prace Państwowego Instytutu Geologicznego 170, 589.Google Scholar
Bogacki, M., 1976. Współczesne sandry na przedpolu Skeidararjökull (Islandia) i plejstoceńskie sandry w Polsce północno-wschodniej. Rozprawy Uniwersytetu Warszawskiego 99, 1165.Google Scholar
Bogacki, M., 1980. Types of outwash forms in north-east Poland. Geographica Polonica 43, 2534.Google Scholar
Bøtter-Jensen, L., Thomsen, K.J., Jain, M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253257.CrossRefGoogle Scholar
Burow, C., 2021. calc_MinDose(): Apply the (un-)logged minimum age model (MAM) after Galbraith et al. (1999) to a given De distribution. Function version 0.4.4. Luminescence: Comprehensive Luminescence Dating Data Analysis. R Package Version 0.9.11.Google Scholar
Cailleux, A., 1942. Les actions éoliennes périglaciaires en Europe. Mémoires de la Société Géologique de France 41, 1176.Google Scholar
Carling, P.A., 1987. A terminal debris-flow lobe in the northern Pennines, United Kingdom. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 78, 169176.CrossRefGoogle Scholar
Carling, P.A., 2013. Freshwater megaflood sedimentation: what can we learn about generic processes? Earth-Science Reviews 125, 87113.CrossRefGoogle Scholar
Carling, P.A., Burr, D.M., Johnsen, T.F., Brennand, T.A., 2009. A review of open-channel megaflood depositional landforms on Earth and Mars. In: Burr, D.M., Carling, P.A., Baker, V.B. (Eds.), Megaflooding on Earth and Mars . Cambridge University Press, Cambridge, pp. 3349.CrossRefGoogle Scholar
Carrivick, J.L., Rushmer, E.L., 2006. Understanding high-magnitude outburst floods. Geology Today 22, 6065.CrossRefGoogle Scholar
Cartigny, M.J.B., Ventra, D., Postma, G., van Den Berg, J.H., 2014. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments. Sedimentology 61, 712748.CrossRefGoogle Scholar
Clague, J.J., Evans, S.G., 2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews 19, 17631783.CrossRefGoogle Scholar
Clemmensen, L.B., Hougaard, I.W., Murray, A.S., Pedersen, S.S., 2018. A high-resolution sea-level proxy dated using quartz OSL from the Holocene Skagen Odde spit system, Denmark. Boreas 47, 11841198.CrossRefGoogle Scholar
Costa, J.E., 1983. Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range. Geological Society of America Bulletin 94, 9861004.2.0.CO;2>CrossRefGoogle Scholar
Costello, W.R., Walker, E.G., 1972. Pleistocene sedimentology, Credit River, southern Ontario: a new component of the braided river model. Journal of Sedimentary Petrology 42, 389400.Google Scholar
Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.CrossRefGoogle Scholar
Duller, G.A.T., 2012. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiation Measurements 47, 770777.CrossRefGoogle Scholar
Duller, R.A., Mountney, N.I.P., Russell, A.J., Cassidy, N.C., 2008. Architectural analysis of a volcaniclastic jökulhlaup deposit, southern Iceland: sedimentary evidence for supercritical flow. Sedimentology 55, 939964.CrossRefGoogle Scholar
Durcan, J.A., King, G.E., Duller, G.A.T., 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology 28, 5461.CrossRefGoogle Scholar
Dzierżek, J., Zreda, M., 2007. Timing and style of deglaciation of northeastern Poland from cosmogenic 36Cl dating of glacial and glaciofluvial deposits. Geological Quarterly 51, 203216.Google Scholar
Fersi, W., Penaud, A., Wary, M., Toucanne, S., Waelbroeck, C., Rossignol, L., Eynaud, F., 2021. Imprint of seasonality changes on fluvio-glacial dynamics across Heinrich Stadial 1 (NE Atlantic Ocean). Global and Planetary Change 204, . https://doi.org/10.1016/j.gloplacha.2021.103552.CrossRefGoogle Scholar
Fielding, C.R., 2006. Upper flow regime sheets, lenses and scour fills: extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology 190, 227240.CrossRefGoogle Scholar
Fisher, T.G., 2020. Megaflooding associated with glacial Lake Agassiz. Earth-Science Reviews 201, . https://doi.org/10.1016/j.earscirev.2019.102974.CrossRefGoogle Scholar
Flindt, A.C., Benediktsson, Í.Ö., Alexanderson, H., Möller, P., 2018. A pre‐LGM sandur at Fiskarheden in NW Dalarna, central Sweden–sedimentology and glaciotectonic deformation. Boreas 47, 711737.CrossRefGoogle Scholar
Fuchs, M., Owen, L.A., 2008. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37, 636659.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 127.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 2, 339364.CrossRefGoogle Scholar
Gemmell, A.M.D., 1988. Thermoluminescence dating of glacially transported sediments: some considerations. Quaternary Science Reviews 7, 277285.CrossRefGoogle Scholar
Gueli, A.M., Garro, V., Palio, O., Pasquale, S., Politi, G., Stella, G., Turco, M., 2018. TL and OSL cross-dating for Valcorrente site in Belpasso (Catania, Italy). The European Physical Journal Plus 133, . https://doi.org/10.1140/epjp/i2018-12364-7.CrossRefGoogle Scholar
Guérin, G., Christophe, C., Philippe, A., Murray, A.S., Thomsen, K.J., Tribolo, C., Urbanova, P., et al., 2017. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: introducing the Average Dose Model. Quaternary Geochronology 41, 163173.CrossRefGoogle Scholar
Hansen, L., Tassis, G., Høgaas, F., 2020. Sand dunes and valley fills from Preboreal glacial‐lake outburst floods in south‐eastern Norway – beyond the aeolian paradigm. Sedimentology 67, 810848.CrossRefGoogle Scholar
Hardt, J., Böse, M., 2018. The timing of the Weichselian Pomeranian ice marginal position south of the Baltic Sea: a critical review of morphological and geochronological results. Quaternary International 478, 5158.CrossRefGoogle Scholar
Herget, J., Agatova, A.R., Carling, P.A., Nepop, R.K., 2020. Altai megafloods—the temporal context. Earth-Science Reviews 200, . https://doi.org/10.1016/j.earscirev.2019.102995.CrossRefGoogle Scholar
Hu, G., Min, R., Zhou, Y., Yang, J., Wang, Y., Wang, C., Wang, H., Wang, P., Wang, L., Fan, A., 2022. Luminescence dating of a megaflood event on a terrace of the Jinsha River, China. Quaternary Geochronology 70, . https://doi.org/10.1016/j.quageo.2022.101303 CrossRefGoogle Scholar
Hu, G., Yi, C., Zhang, J., Cao, G., Pan, B., Liu, J., Jiang, T., Yi, S., Li, D., Huang, J., 2018. Chronology of a lacustrine core from Lake Linggo Co using a combination of OSL, 14C and 210Pb dating: implications for the dating of lacustrine sediments from the Tibetan Plateau. Boreas 47, 656670.CrossRefGoogle Scholar
Hughes, P.D., 2022. Concept and global context of the glacial landforms from the Last Glacial Maximum. In: Palacious, D., Hughes, P.D., Garcia-Ruiz, J.M., Andres, N. (Eds.), European Glacial Landscapes: Maximum Extent of Glaciations . Elsevier, Amsterdam, pp. 355358.CrossRefGoogle Scholar
Hughes, P.D., Palacios, D., García-Ruiz, J.M., Andrés, N., 2022. The European glacial landscapes from the Last Glacial Maximum-synthesis. In: Palacious, D., Hughes, P.D., Garcia-Ruiz, J.M., Andres, N. (Eds.), European Glacial Landscapes: Maximum Extent of Glaciations . Elsevier, Amsterdam, pp. 407416.CrossRefGoogle Scholar
Kalińska, E., 2012. Geological setting and sedimentary characteristics of the coversands distributed in the western part of the Blonie glaciolacustrine basin (Central Poland) – preliminary results. Bulletin of the Geological Society of Finland 84, 3344.CrossRefGoogle Scholar
Kalińska, E., Weckwerth, P., Alexandeson, H., 2023. Recent advances in luminescence dating of the Late Quaternary sediments in the Baltic States, Northern Europe: a review. Earth-Science Reviews 236, . https://doi.org/10.1016/j.earscirev.2022.104272.CrossRefGoogle Scholar
Kalińska-Nartiša, E., Nartišs, M., 2016. Sandy fan-like forms in the central-eastern Mazovian Lowland (Central Poland): textural record and chronology. Geografiska Annaler Series A: Physical Geography 98, 111127.CrossRefGoogle Scholar
Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J.P., Murray, A.S., 2015. Age and sedimentary record of inland eolian sediments in Lithuania, NE European Sand Belt. Quaternary Research 84, 8295.Google Scholar
Kang, S., Wang, X., Lu, Y., 2013. Quartz OSL chronology and dust accumulation rate changes since the Last Glacial at Weinan on the southeastern Chinese Loess Plateau. Boreas 42, 815829.CrossRefGoogle Scholar
Karasiewicz, T., Hrynowiecka, A., Weckwerth, P., Pawłowski, D., Rzodkiewicz, M., Krzymińska, J., 2024. Palaeoecological and palaeoenvironmental responses to abrupt climate changes during the Late Vistulian: the unique archive recorded at the Osinki site (NE Poland) and its regional importance. Quaternary International 686, 1834.CrossRefGoogle Scholar
Kershaw, J.A., Clague, J.J., Evans, S.G., 2005. Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada. Earth Surface Processes and Landforms 30, 125.CrossRefGoogle Scholar
Kim, J.C., Duller, G.A.T., Roberts, H.M., Wintle, A.G., Lee, Y.I., Yi, S.B., 2010. Re-evaluation of the chronology of the palaeolithic site at Jeongokri, Korea, using OSL and TT-OSL signals from quartz. Quaternary Geochronology 5, 365370.CrossRefGoogle Scholar
King, G.E., Robinson, R.A.J., Finch, A.A., 2014. Towards successful OSL sampling strategies in glacial environments: deciphering the influence of depositional processes on bleaching of modern glacial sediments from Jostedalen, Southern Norway. Quaternary Science Reviews 89, 94107.CrossRefGoogle Scholar
Knight, J., Evans, M., 2018. Luminescence dating, sediment analysis, and flood dynamics on the Sabie River, South Africa. Geomorphology 319, 114.CrossRefGoogle Scholar
Kondracki, J., Pietkiewicz, S., 1967. Czwartorzęd północno-wschodniej Polski. In: Galon, R., Dylik, J. (Eds.), Czwartorzęd Polski . Wydawnictwo Naukowe PWN, Warszawa, pp. 207258.Google Scholar
Krzywicki, T., 2002. The maximum ice sheet limit of the Vistulian Glaciation in northeastern Poland and neighbouring areas. Geological Quarterly 46, 165188.Google Scholar
Lamsters, K., Kalińska-Nartiša, E., Zelčs, V., Alexanderson, H., 2017. New luminescence ages reveal early to Middle Weichselian deposits in central Latvia. Geological Quarterly 61, 480490.CrossRefGoogle Scholar
Lang, J., Brandes, Ch., J, Winsemann.., 2017a. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America). Sedimentary Geology 349, 79102.CrossRefGoogle Scholar
Lang, J., Fedele, J., Hoyal, D., 2019. Bedform successions formed by submerged plane-wall jet flows. In: Lefebvre, A., Garlan, T., Winter, C. (Eds.), Marine and River Dune Dynamics – MARID VI. MARUM – Center for Marine Environmental Sciences, University of Bremen and SHOM, Bremen, Germany, pp. 151156.Google Scholar
Lang, J., Le Heron, D.P., Van den Berg, J.H., Winsemann, J., 2021. Bedforms and sedimentary structures related to supercritical flows in glacigenic settings. Sedimentology 68, 15391579.CrossRefGoogle Scholar
Lang, J., Sievers, J., Loewer, M., Igel, J., Winsemann, J., 2017b. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: integrating outcrop and ground-penetrating radar data. Sedimentary Geology 362, 83100.CrossRefGoogle Scholar
Lang, J., Winsemann, J., 2013. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: from cyclic steps to humpback dunes. Sedimentary Geology 296, 3654.CrossRefGoogle Scholar
Last, G.V., Rittenour, T.M., 2021. Chronology of Missoula Flood Deposits at the Coyote Canyon Mammoth Site, Washington State, USA. Quaternary 4, 117.CrossRefGoogle Scholar
Long, H., Tsukamoto, S., Buylaert, J.P., Murray, A.S., Jain, M., Frechen, M., 2019. Late Quaternary OSL chronologies from the Qinghai Lake (NE Tibetan Plateau): inter-comparison of quartz and K-feldspar ages to assess the pre-depositional bleaching. Quaternary Geochronology 49, 159164.CrossRefGoogle Scholar
Lowick, S.E., Buechi, M.W., Gaar, D., Graf, H.R., Preusser, F., 2015. Luminescence dating of Middle Pleistocene proglacial deposits from northern Switzerland: methodological aspects and stratigraphical conclusions. Boreas 44, 459482.CrossRefGoogle Scholar
Lüthgens, C., Böse, M., Preusser, F., 2011. Age of the Pomeranian ice‐marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598615.CrossRefGoogle Scholar
Lüthgens, C., Hardt, J., Böse, M., 2020. Proposing a new conceptual model for the reconstruction of ice dynamics in the SW sector of the Scandinavian Ice Sheet (SIS) based on the reinterpretation of published data and new evidence from optically stimulated luminescence (OSL) dating. E&G Quaternary Science Journal 69, 201223.Google Scholar
Margold, M., Jansen, J.D., Codilean, A.T., Preusser, F., Gurinov, A.L., Fujioka, T., Fink, D., 2018. Repeated megafloods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60,000 years. Quaternary Science Reviews 187, 4161.CrossRefGoogle Scholar
Marks, L., 2002. Last Glacial Maximum in Poland. Quaternary Science Reviews 21, 103110.CrossRefGoogle Scholar
Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 8188.CrossRefGoogle Scholar
Marks, L., Bitinas, A., Błaszkiewicz, M., Börner, A., Guobyte, R., Rinterknecht, V., Tylmann, K., 2022. Northern Central Europe: glacial landforms during deglaciation (18.9-14.9 ka). In: Palacious, D., Hughes, P.D., Garcia-Ruiz, J.M., Andres, N. (Eds.), European Glacial Landscapes: Maximum Extent of Glaciations . Elsevier, Amsterdam, pp. 95104.Google Scholar
Marren, P.M., 2005. Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective. Earth-Science Reviews 70, 203251.CrossRefGoogle Scholar
Medialdea, A., Thomsen, K.J., Murray, A.S., Benito, G., 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology 22, 1124.CrossRefGoogle Scholar
Miall, A.D., 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. Fluvial Sedimentology 5, 597600.Google Scholar
Miall, A.D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22, 261308.CrossRefGoogle Scholar
Murray, A.S., Roberts, R.G., 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. Radiation Measurements 29, 503515.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Murton, J.B., Bateman, M.D., Dallimore, S.R., Teller, J.T., Yang, Z., 2010. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740743.CrossRefGoogle ScholarPubMed
Mycielska-Dowgiałło, E., Woronko, B., 1998. Analiza obtoczenia i zmatowienia powierzchni ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna. Przegląd Geologiczny 46, 12751281.Google Scholar
Nian, X., Zhang, W., Wang, Z., Sun, Q., Chen, Z., 2021. Inter-comparison of optically stimulated luminescence (OSL) ages between different fractions of Holocene deposits from the Yangtze delta and its environmental implications. Marine Geology 432, . https://doi.org/10.1016/j.margeo.2020.106401.CrossRefGoogle Scholar
O’Connor, J.E., Baker, V.R., Waitt, R.B., Smith, L.N., Cannon, C.M., George, D.L., Denlinger, R.P., 2020. The Missoula and Bonneville floods—a review of ice-age megafloods in the Columbia River basin. Earth-Science Reviews 208, . https://doi.org/10.1016/j.earscirev.2020.103181.CrossRefGoogle Scholar
Peng, J., Li, B., Jacobs, Z., 2020. Modelling heterogeneously bleached single-grain equivalent dose distributions: implications for the reliability of burial dose determination. Quaternary Geochronology 60, . https://doi.org/10.1016/j.quageo.2020.101108.CrossRefGoogle Scholar
Quik, C., Wallinga, J., 2018. Reconstructing lateral migration rates in meandering systems – a novel Bayesian approach combining optically stimulated luminescence (OSL) dating and historical maps. Earth Surface Dynamics 6, 705721.CrossRefGoogle Scholar
Rhodes, E., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39, 462488.CrossRefGoogle Scholar
Rinterknecht, V.R., Bitinas, A., Clark, P.U., Raisbeck, G.M., Yiou, F., Brook, E.J., 2008. Timing of the last deglaciation in Lithuania. Boreas 37, 426433.CrossRefGoogle Scholar
Rinterknecht, V.R., Marks, L., Piotrowski, J.A., Raisbeck, G.M., Yiou, F., Brook, E.J., Clark, P.U., 2005. Cosmogenic 10Be ages on the Pomeranian Moraine, Poland. Boreas 34, 186191.CrossRefGoogle Scholar
Russell, A.J., Knudsen, Ó., 1999. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jokulhlaup), Skeidararjokull, Iceland. Sedimentary Geology 127, 110.CrossRefGoogle Scholar
Russell, A.J., Roberts, M.J., Fay, H., Marren, P.M., Cassidy, N.J., Tweed, F.S., Harris, T., 2006. Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75, 3364.CrossRefGoogle Scholar
Russell, H.A.J., Arnott, R.W.C., 2003. Hydraulic-jump and hyperconcentrated-flow deposits of a glacigenic subaqueous fan: oak ridges moraine, southern Ontario, Canada. Journal of Sedimentary Research 73, 887905.CrossRefGoogle Scholar
Rychel, J., Sokołowski, R.J., Sieradz, D., Hrynowiecka, A., Mirosław-Grabowska, J., Sienkiewicz, E., Niska, M., et al., 2023. Late Pleniglacial-Late Glacial climate oscillations detected in the organic lacustrine succession at the Lipowo site, north-eastern Poland. Journal of Quaternary Science 38, 186207.CrossRefGoogle Scholar
Slootman, A., Cartigny, M.J.B., 2020. Cyclic steps: review and aggradation-based classification. Earth-Science Reviews 201, . https://doi.org/10.1016/j.earscirev.2019.102949.CrossRefGoogle Scholar
Slootman, A., Cartigny, M.J.B., Vellinga, A.J., 2019. Build-up-and-fill structure: the depositional signature of strongly aggradational chute-and-pool bedforms. In: Lefebvre, A., Garlan, T., Winter, C. (Eds.), Marine and River Dune Dynamics – MARID VI. MARUM – Center for Marine Environmental Sciences, University of Bremen and SHOM, Bremen, Germany, pp. 213218.Google Scholar
Smolska, E., 2007a. Extreme rainfalls and their impact on slopes—evaluation based on soil erosion measurements (as exemplified by the Suwałki Lakeland, Poland). Geographia Polonica 80, 151163.Google Scholar
Smolska, E., 2007b. Development of gullies and sediment fans in last-glacial areas on the example of the Suwałki Lakeland (NE Poland). Catena 71, 122131.CrossRefGoogle Scholar
Smolska, E., 2008. Channel response to flood flows on example of the Szeszupa a river in the last-glacial area (NE Poland). Quaestiones Geographicae 27A, 6372.Google Scholar
Sobota, I., Weckwerth, P., Grajewski, T., Dziembowski, M., Greń, K., Nowak, M., 2018. Short-term changes in thickness and temperature of the active layer in summer in the Kaffioyra region, NW Spitsbergen, Svalbard. Catena 160, 141153.CrossRefGoogle Scholar
Suwiński, M., Weckwerth, P., 2024. Large-scale bedforms in the vicinity of Serwy Lake (NE Poland): their morphometry and links to the high-energy glaciofluvial environment. Bulletin of Geography: Physical Geography Series 26, 5368.Google Scholar
Trandafir, O., Timar-Gabor, A., Schmidt, C., Veres, D., Anghelinu, M., Hambach, U., Simon, S., 2015. OSL dating of fine and coarse quartz from a Palaeolithic sequence on the Bistrița Valley (Northeastern Romania). Quaternary Geochronology 30, 487492.CrossRefGoogle Scholar
Thomas, P.J., Murray, A.S., Sandgren, P., 2003. Age limit and age underestimation using different OSL signals from lacustrine quartz and polymineral fine grains. Quaternary Science Reviews 22, 11391143.CrossRefGoogle Scholar
Thrasher, I.M., Mauz, B., Chiverrell, R.C., Lang, A., Thomas, G.S.P., 2009. Testing an approach to OSL dating of Late Devensian glaciofluvial sediments of the British Isles. Journal of Quaternary Sciences 24, 785801.CrossRefGoogle Scholar
Toucanne, S., Soulet, G., Freslon, N., Silva Jacinto, R., Dennielou, B., Zaragosi, S., Eynaud, F., Bourillet, J.F., Bayon, G., 2015. Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews 123, 113133.CrossRefGoogle Scholar
Tsukamoto, S., Rades, E.F., 2016. Performance of pulsed OSL stimulation for minimising the feldspar signal contamination in quartz samples. Radiation Measurements 84, 2633.CrossRefGoogle Scholar
Turzewski, M.D., Huntington, K.W., Licht, A., Lang, K.A., 2020. Provenance and erosional impact of Quaternary megafloods through the Yarlung-Tsangpo Gorge from zircon U-Pb geochronology of flood deposits, eastern Himalaya. Earth and Planetary Science Letters 535, . https://doi.org/10.1016/j.epsl.2020.116113.CrossRefGoogle Scholar
Tylmann, K., Rinterknecht, V.R., Woźniak, P.P., Bourlès, D., Schimmelpfennig, I., Guillou, V., Aumaître, G., Keddadouche, K., 2019. The Local Last Glacial Maximum of the southern Scandinavian Ice Sheet front: cosmogenic nuclide dating of erratics in northern Poland. Quaternary Science Reviews 219, 3646.CrossRefGoogle Scholar
Tylmann, K., Rinterknecht, V.R., Woźniak, P.P., Guillour, V., Team, ASTER, 2022. Asynchronous dynamics of the last Scandinavian Ice Sheet along the Pomeranian Phase ice-marginal belt: a new scenario inferred from surface exposure 10Be dating. Quaternary Science Reviews 294, . https://doi.org/10.1016/j.quascirev.2022.107755 .CrossRefGoogle Scholar
Tylmann, K., Uścinowicz, S., 2022. Timing of the last deglaciation phases in the southern Baltic area inferred from Bayesian age modeling. Quaternary Science Reviews 287, . https://doi.org/10.1016/j.quascirev.2022.107563.CrossRefGoogle Scholar
Weckwerth, P., 2018. Fluvial responses to the Weichselian ice sheet advances and retreats: implications for understanding river paleohydrology and pattern changes in Central Poland. International Journal of Earth Sciences 107, 14071429.CrossRefGoogle Scholar
Weckwerth, P., Chabowski, M., 2013. Heavy minerals as a tool to reconstruct river activity during the Weichselian glaciation (Torun Basin, Poland). Geologos 19, 2546.CrossRefGoogle Scholar
Weckwerth, P., Greń, K., Sobota, I., 2019b. Controls on downstream variation in surficial sediment size of an outwash braidplain developed under high Arctic conditions (Kaffiøyra, Svalbard). Sedimentary Geology 387, 7586.CrossRefGoogle Scholar
Weckwerth, P., Kalińska, E., Wysota, W., Krawiec, A., Adamczyk, A., Chabowski, M., 2022. What does transverse furrow train in scabland-like topography originate from? The unique records of upper-flow-regime bedforms of a glacial lake-outburst flood in NE Poland. Quaternary International 617, 4058.CrossRefGoogle Scholar
Weckwerth, P., Kalińska, E., Wysota, W., Krawiec, A., Alexanderson, H., Chabowski, M., 2024. Evolutionary model for glacial lake-outburst fans at the ice-sheet front: development of meltwater outlets and origins of bedforms. Geomorphology 453, . https://doi.org/10.1016/j.geomorph.2024.109125.CrossRefGoogle Scholar
Weckwerth, P., Przegietka, K.R., Chruścińska, A., Pisarska-Jamroży, M., 2013. The relation between optical bleaching and sedimentological features of fluvial deposits in the Toruń basin (Poland). Geological Quarterly 57, 3144.Google Scholar
Weckwerth, P., Wysota, W., 2024. Unique landscape originated by cataclysmic glacial floods at the Weichselian glaciation decline in north-eastern Poland. In: Migoń, P. (Ed.), Landscapes and Landforms of Poland . Springer, Cham, pp. 665685.CrossRefGoogle Scholar
Weckwerth, P., Wysota, W., Piotrowski, J.A., Adamczyk, A., Krawiec, A., Dąbrowski, M., 2019a. Late Weichselian glacier outburst floods in North-Eastern Poland: landform evidence and palaeohydraulic significance. Earth-Science Reviews 194, 216233.CrossRefGoogle Scholar
Wells, G.H., Dugmore, A.J., Beach, T., Baynes, E.R.C., Sæmundsson, Þ., Luzzadder-Beach, S., 2022. Reconstructing glacial outburst floods (jökulhlaups) from geomorphology: challenges, solutions, and an enhanced interpretive framework. Progress in Physical Geography 46, 398421.CrossRefGoogle Scholar
Winsemann, J., Lang, J., Polom, U., Loewer, M., Igel, J., Pollok, L., Brandes, C., 2018. Ice-marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture. Boreas 47, 9731002.CrossRefGoogle Scholar
Yang, A., Wang, H., Liu, W., Hu, K., Liu, D., Wu, C., Hu, X., 2022. Two megafloods in the middle reach of Yarlung Tsangpo River since Last-glacial period: evidence from giant bars. Global and Planetary Change 208, . https://doi.org/10.1016/j.gloplacha.2021.103726.CrossRefGoogle Scholar
Zieliński, T., 1989. Lithofacies and palaeoenvironmental characteristics of Suwałki outwash (Pleistocene, Northwest Poland). Annales Societatis Geologorum Poloniae 59, 249270.Google Scholar
Zieliński, T., 1993. Sandry Polski północno-wschodniej: osady i warunki sedymentacji. Wydawnictwa Uniwersytetu Śląskiego 96, 195.Google Scholar
Zolnikov, I.D., Deev, E.V., Kotler, S.A., Rusanov, G.G., Nazarov, D.V., 2016. New results of OSL dating of Quaternary sediments in the Upper Katun’ valley (Gorny Altai) and adjacent area. Russian Geology and Geophysics 57, 933943.CrossRefGoogle Scholar
Żurek, S., 1990. Związek procesu zatorfienia z elementami środowiska przyrodniczego wschodniej Polski. Roczniki Nauk Rolniczych PAN, Seria D 220, 1174.Google Scholar
Supplementary material: File

Kalińska et al. supplementary material

Kalińska et al. supplementary material
Download Kalińska et al. supplementary material(File)
File 171.1 KB