Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T09:21:03.804Z Has data issue: false hasContentIssue false

Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed

Published online by Cambridge University Press:  20 January 2017

Alexander A. Prokopenko*
Affiliation:
Department of Geological Sciences, University of South Carolina, Columbia, SC 29208, USA
Galina K. Khursevich
Affiliation:
Institute of Geological Sciences, National Academy of Sciences of Belarus, Minsk 220141, Belarus
Elena V. Bezrukova
Affiliation:
Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
Mikhail I. Kuzmin
Affiliation:
Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia
Xavier Boes
Affiliation:
Royal Observatory of Belgium, Department of Geodynamics, Seismology, Ringlaan 1180-Brussels, Belgium
Douglas F. Williams
Affiliation:
Department of Geological Sciences, University of South Carolina, Columbia, SC 29208, USA
Svetlana A. Fedenya
Affiliation:
Institute of Geological Sciences, National Academy of Sciences of Belarus, Minsk 220141, Belarus
Nataliya V. Kulagina
Affiliation:
Institute of Earth Crust, SIberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia
Polina P. Letunova
Affiliation:
Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
Anna A. Abzaeva
Affiliation:
Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
*
*Corresponding author.E-mail address:sasha@geol.sc.edu (A.A. Prokopenko)

Abstract

Here we discuss paleoenvironmental evolution in the Baikal region during the Holocene using new records of aquatic (diatom) and terrestrial vegetation changes from Hovsgol, Mongolia's largest and deepest lake. We reconcile previous contradictory Baikal timescales by constraining reservoir corrections of AMS dates on bulk sedimentary organic carbon. Synthesis of the Holocene records in the Baikal watershed reveals a northward progression in landscape/vegetation changes and an anti-phase behavior of diatom and biogenic silica proxies in neighboring rift lakes. In Lake Baikal, these proxies appear to be responsive to annual temperature increases after 6 ka, whereas in Lake Hovsgol they respond to higher precipitation/runoff from 11 to 7 ka. Unlike around Lake Baikal, warmer summers between 6 and 3.5 ka resulted in the decline, not expansion, of forest vegetation around Lake Hovsgol, apparently as a result of higher soil temperatures and lower moisture availability. The regional climatic proxy data are consistent with a series of 500-yr time slice Holocene GCM simulations for continental Eurasia. Our results allow reevaluation of the concepts of ‘the Holocene optimum’ and a ‘maximum of the Asian summer monsoon’, as applied to paleoclimate records from continental Asia.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bezrukova, E.V., Nakamura, T., Levina, O.V., and Krapivina, S.M. (2000). A new high-resolution palynological and biogenic silica record of Mongolian and East Siberian Holocene environmental changes: a key to the understanding of Lake Baikal area climate variability.Walther, M., Janzen, J., Riedel, F., Keupp, H. State and Dynamics of Geosciences and Human Geography of Mongolia Berliner geowiss. Abh. A, 113117.Google Scholar
Bezrukova, E.V., Abzaeva, A.A., Letunova, P.P., Kulagina, N.V., Vershinin, K.E., Belov, A.V., Orlova, L.A., Danko, L.V., and Krapivina, S.M. (2005a). )Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-environmental indicator. Quaternary International 136, 4757.Google Scholar
Bezrukova, E.V., Krivnogov, S.K., Abzaeva, A.A., Vershini, K.E., Letunova, P.P., Orlova, L.A., Takahara, H., Miyoshi, N., Krapivina, S.M., and Kawamuro, K. (2005b). )Landscapes and climate of the Baikal region in the Late Glacial and Holocene. Russian Geology and Geophysics 46, 2133.Google Scholar
Boes, X., and Fagel, N. (2005). Impregnation method for detecting annual laminations in sediment cores: an overview. Sedimentary Geology 179, 185194.Google Scholar
Bogoyavlensky, B.A. (1989). Atlas of Lake Hovsgol. GUGK, Moscow.in RussianGoogle Scholar
Bradbury, J.P., Bezrukova, E.V., Chernyaeva, G., Colman, S.M., Khursevich, G., King, J., and Likhoshway, Y. (1994). A synthesis of post-glacial diatom records from Lake Baikal. Journal of Paleolimnology 10, 231251.Google Scholar
Bush, A.B.G. (2005). CO2/H2O and orbitally driven climate variability over central Asia through the Holocene. Quaternary International 136, 1523.CrossRefGoogle Scholar
Chebykin, E.P., Edgington, D.N., Grachev, M.A., Zheleznyakova, T.O., Vorobyova, S.S., Kulikova, N.S., Azarova, I.N., M. Khlystov, O., and Goldberg, E.L. (2002). Abrupt increase in precipitation and weathering of soils in East Siberia coincident with the end of the last glaciation (15(cal kyr BP). Earth and Planetary Science Letters 200, 167175.Google Scholar
COHMAP-Members (1988). Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 10431052.Google Scholar
Colman, S.M., Carter, S.J., Hatton, J., Haskell, B.J., (1994). Cores collected in Lake Baikal, Siberia, by USGS, 1990–1992, visual descriptions, photographs, x-radiographs, bulk-density measurements, and grain size analyses. USGS..Google Scholar
Colman, S.M., Peck, J.A., Karabanov, E.B., Carter, S.J., Bradbury, J.P., King, J.W., and Williams, D.F. (1995). Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378, 769771.Google Scholar
Colman, S.M., Jones, G.A., Rubin, M., King, J.W., Peck, J.A., and Orem, W.H. (1996). AMS radiocarbon analyses from Lake Baikal, Siberia: challenges of dating sediments from a large, oligotrophic lake. Quaternary Science Reviews 15, 669684.Google Scholar
Demske, D., Heumann, G., Granoszewski, W., Nita, M., Mamakowa, K., Tarasov, P.E., and Oberhansli, H. (2005). Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Global and Planetary Change 46, 255279.CrossRefGoogle Scholar
Dorofeyuk, N.I., and Tarasov, P.E. (1998). Vegetation and lake leves in northern Mongolia during the past 12500 years from palynological and diatom analyses. Stratigraphy and Geologic Correlation 6, 7387.Google Scholar
Edlund, M.B., Soninkhishig, N., and Williams, R.M. (2003). The planktonic diatom diversity of ancient Lake Hovsgol, Mongolia. Phycologia 42, 232260.Google Scholar
Fedotov, A.P., Chebykin, E.P., Yu, S.M., Vorobyova, S.S., Yu, O.E., Golobokova, L.P., Pogodaeva, T.V., Zheleznyakova, T.O., Grachev, M.A., and Tomurhuu, D. (2004). Changes in the volume and salinity of Lake Khubsugul (Mongolia) in response to global climate changes in the upper Pleistocene and the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 245257.Google Scholar
Fowell, S.J., Hansen, B.C.S., Peck, J.A., Khosbayar, P., and Ganbold, E. (2003). Mid to late Holocene climate evolution of the Lake Telmen basin, north-central Mongolia, based on palynological data. Quaternary Research 59, 353363.Google Scholar
Galazy, G.I. (1993). Atlas of Lake Baikal. GUGK, Moscow.in RussianGoogle Scholar
Grunert, J., Lehmkuhl, F., and Walther, M. (2000). Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quaternary International 65–66, 171192.Google Scholar
Harrison, S.P., Yu, G., and Tarasov, P.E. (1996). Late Quaternary Lake-Level Record from Northern Eurasia. Quaternary Research 45, 138159.Google Scholar
Horiuchi, K., Minoura, K., Hoshino, K., Oda, T., Nakamura, T., and Kawai, T. (2000). Palaeoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 95108.Google Scholar
Karabanov, E.B., Prokopenko, A.A., Khursevich, G.K., and Williams, D.F. (2000). A new record of Holocene climate change from bottom sediments of Lake Baikal. Palaeogeography, Palaeoclimatology, Palaeoecology 156, 211244.Google Scholar
Karabanov, E., Williams, D., Kuzmin, M., Sideleva, V., Khursevich, G., Prokopenko, A., Solotchina, E., Tkachenko, L., Fedenya, S., and Kerber, E. (2004). Ecological collapse of Lake Baikal and Lake Hovsgol ecosystems during the Last Glacial and consequences for aquatic species diversity. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 227243.Google Scholar
Khursevich, G.K., Karabanov, E.B., Prokopenko, A.A., Kuzmin, M.I., Williams, D.F., Fedenya, S.A., and Gvozdkov, A.N. (2001). Insolation regime in Siberia as a major factor controlling diatom production in Lake Baikal during the past 800,000 years. Quaternary International 80–81, 4758.Google Scholar
Kiss, , Klee, R., and Hegewald, E. (1999). Reinvestigation of the original material of Cyclotella ocellata Pantocsek (Bacillariophyceae). Archiv fur Hydrobiologie, Supplement vol. 128, 3953.Google Scholar
Kutzbach, J.E., Webb, T. III(1993). Conceptual basis for understanding Late Quaternary climates.Wright, H.E., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrot, F.A., Bartlein, P.J. Global Climates since the Last Glacial Maximum University of Minnesota Press, Minneapolis.511.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285.Google Scholar
Miyoshi, N., Takeuchi, T., Kataoka, H., Ueda, K., Morita, Y., Kawamuro, K., Takahara, H., Hase, Y., Inouchi, Y., Oda, T., and Minoura, K. (1999). Pollen analysis of upper sediment (VER 94/5-St.21) in Lake Baikal. Japanese Journal of Palynology 455, 2734.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. (1991). Pollen Analysis.second editionBlackwell Scientific Publications, Oxford.Google Scholar
Nakamura, T., Oda, T., Tanaka, A., and Horiuchi, K. (2003). High precision 14C age estimation of bottom sediments of Lake Baikal and Lake Hovsgol by AMS. Gekkan Chikyu Special No. 42, 2031.Google Scholar
Nara, F., Tani, Y., Soma, Y., Soma, M., Naraoka, H., Watanabe, T., Horiuchi, K., Kawai, T., Oda, T., and Nakamura, T. (2005). Response of phytoplankton productivity to climate change recorded by sedimentary photosynthetic pigments in Lake Hovsgol (Mongolia) for the last 23,000 years. Quaternary International 136, 7181.Google Scholar
Nelson, C.H., Karabanov, E.B., Colman, S.M., and Escutia, C. (1999). Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia. Geology 27, 163166.Google Scholar
Piotrowska, N., Bluszcz, A., Demske, D., Granoszewski, W., and Heumann, G. (2004). Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments. Radiocarbon 46, 181187.CrossRefGoogle Scholar
Popovskaya, G.I. (1987). Phytoplankton of the deepest lake in the world. Proceedings of Zoology Institute. AN SSSR Press, Leningrad.107116.in RussianGoogle Scholar
Popovskaya, G.I., Genkal, S.I., and Likhoshway, Y.V. (2002). Diatoms of the Plankton of Lake Baikal: Atlas and Key. Nauka, Novosibirsk.in RussianGoogle Scholar
Potemkina, T.G., and Potemkin, V.L. (2002). Comparative characteristics of riverine runoff in Lakes Baikal and Hovsgol. Geography and Natural Resources 3, 3943.in RussianGoogle Scholar
Prokopenko, A.A. (2000). Challenges in constructing the age model for the Lake Baikal cores during the last glacial/interglacial transition: the response to M.A. Grachev. Earth and Planetary Science Letters 181, 267270.Google Scholar
Prokopenko, A.A., and Williams, D.F. (2004). Deglacial methane emission signals in the carbon isotopic record of Lake Baikal. Earth and Planetary Science Letters 218, 135147.Google Scholar
Prokopenko, A.A., Williams, D.F., Karabanov, E.B., and Khursevich, G.K. (1999). Response of Lake Baikal ecosystem to climate forcing and pCO2 change over the last glacial/interglacial transition. Earth and Planetary Science Letters 172, 239253.Google Scholar
Prokopenko, A.A., Karabanov, E.B., Williams, D.F., Kuzmin, M.I., Shackleton, N.J., Crowhurst, S.J., Peck, J.A., Gvozdkov, A.N., and King, J.W. (2001). Biogenic silica record of the Lake Baikal response to climatic forcing during the Brunhes chron. Quaternary Research 55, 123132.Google Scholar
Prokopenko, A.A., Kuzmin, M.I., Williams, D.F., Gelety, V.F., Kalmychkov, G.V., Gvozdkov, A.N., and Solotchin, P.A. (2005). Basin-wide sedimentation changes and deglacial lake-level rise in the Hovsgol basin, NW Mongolia. Quaternary International 136, 5969.Google Scholar
Ross, R., Cox, E.J., Karayeva, N.I., Mann, D.G., Paddock, T.B.B., Simonsen, R., and Sims, P.A. (1979). An amended terminology for the siliceous component of the diatom cell. Nova Hedwigia. Beiheft 64, 513533.Google Scholar
Savina, L.N. (1982). Tendencies of the evolution of the Baikal shore landscapes according to the results of paleogeographical research.Belova, V.A., Lut, B.F. The Late Cenozoic history of lakes of the USSR Nauka, Novosibirsk.4252.in RussianGoogle Scholar
Savina, L.N. (1986). Boreal forests of Northern Asia during the Holocene. Nauka, Novosibirsk.in RussianGoogle Scholar
Shimaraev, M.N., Verbolov, V.I., Granin, N.G., and Sherstyankin, P.P. (1994). Physical limnology of Lake Baikal: a review. Baikal International Center for Ecological Research, Irkutsk-Okayama.Google Scholar
Short, D.A., Mengel, J.G., Crowley, T.J., Hyde, W.T., and North, G.R. (1991). Filtering of Milankovitch cycles by Earth's Geography. Quaternary Research 35, 157173.Google Scholar
Solotchina, E.P., Kuzmin, M.I., Stolpovskaya, V.N., Karabanov, E.B., Prokopenko, A.A., and Tkachenko, L.L. (2003). Mineralogical and crystallochemical indicators of environmental and climate change in Holocene–Pleistocene sediments of Lake Hovsgol, Mongolia. Doklady AN 391, 15.Google Scholar
Stoermer, E.F., Emmert, G., Julius, M.L., and Schelske, C.L. (1996). Paleolimnologic evidence of rapid recent change in Lake Erie's trophic status. Canadian Journal of Fisheries and Aquatic Sciences 53, 14511458.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. (1998). INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Takahara, H., Krivonogov, S.K., Bezrukova, E.V. Miyoshi, N. Morita, Y. Nakamura, T. Hase, Y. Shinomiya, Y. Kawamuro, K. (2000). Vegetation history of southeastern and eastern coasts of Lake Baikal from bog sediments since the last interstade.Minoura, K. Lake Baikal: A Mirror in Time and Space for Understanding Global Change Processes Elsevier, Tokyo.108118.Google Scholar
Tarasov, P.E. Pushenko, M.Y. Harrison, S.P. Saarse, L. Andreev, A.A. Aleshinskaya, Z.V. Davydova, N.N. Dorofeyuk, N.I. Efremov, Y.V. Elina, G.A. Elovicheva, Y.K. Filimonova, L.V. Gunova, V.S. Khomutova, V.I. Kvavadze, E.V. Neustrueva, I.Y. Pisareva, V.V. Sevastyanov, D.V. Shelekhova, T.A. Subetto, D.A. Uspenskaya, O.N. Zernitzkaya, V.P. (1996). Lake Status Records from the Formenr Soviet Unon and Mongolia: Documentation of the Second Version of the Data Base. NOAA Paleoclimatology Publication Series Report 5., pp. 244, Boulder, CO., Google Scholar
Tarasov, P.E., Guiot, J., Cheddadi, R., Andreev, A.A., Bezusko, L.G., Blyakharchuk, T.A., Dorofeyuk, N.I., Filimonova, L.V., Volkova, V.S., and Zernitskaya, V.P. (1999). Climate in northern Eurasia 6000(years ago reconstructed from pollen data. Earth and Planetary Science Letters 171, 635645.Google Scholar
Tarasov, P., Dorofeyuk, N., and Meteltzeva, E. (2000). Holocene vegetation and climate changes in Hoton-Nur basin, northwest Mongolia. Boreas 29, 117126.Google Scholar
Tarasov, P.E., Dorofeyuk, N.I., and Vipper, P.B. (2002). Vegetation Dynamics in Buryatia during the Holocene. Stratigraphy and Geologic Correlation 10, 94103.Google Scholar
Theriot, E.C., and Serieyssol, K.K. (1994). Phylogenetic systematics as a guide to understnding features and potential morphological characters of the centric diatom family Thlassiosiraceae. Diatom Research 2, 251265.Google Scholar
Traverse, A. (1988). Paleopalynology. Allen and Unwin, Boston.Google Scholar
Vipper, P.B., Dorofeyuk, N.I., Meteltzeva, E.I., and Sokolovskaya, V.P. (1989). Landscape and Climate Changes in Central Mongolia during the Holocene.Khotinsky, N.A. Paleoklimaty pozdnelednikovya i golotsena (Paleoclimates of Late Glacial and the Holocene) Nauka, Moscow.160167.in RussianGoogle Scholar
Williams, D.F., Peck, J., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V., King, J., and Kuzmin, M.I. (1997). Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science 278, 11141117.Google Scholar