Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T10:05:01.685Z Has data issue: false hasContentIssue false

Paleomagnetic observations from lake sediments on Samosir Island, Toba caldera, Indonesia, and its late Pleistocene resurgence

Published online by Cambridge University Press:  07 April 2020

Katharine E. Solada*
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon97331, USA
Brendan T. Reilly
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon97331, USA Scripps Institution of Oceanography, San Diego, California92037, USA
Joseph S. Stoner
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon97331, USA
Shanaka L. de Silva
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon97331, USA
Adonara E. Mucek
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon97331, USA
Robert G. Hatfield
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon97331, USA Department of Geological Sciences, University of Florida, Gainesville, Florida32611, USA
Indyo Pratomo
Affiliation:
Geological Agency of Indonesia, JL. Diponegoro No. 57, Jawa Barat, Indonesia
Rendi Jamil
Affiliation:
Geological Agency of Indonesia, JL. Diponegoro No. 57, Jawa Barat, Indonesia
Baskoro Setianto
Affiliation:
Geological Agency of Indonesia, JL. Diponegoro No. 57, Jawa Barat, Indonesia
*
*Corresponding author e-mail address: soladak@oregonstate.edu (K.E. Solada).

Abstract

Approximately 74 ka, Toba caldera in Sumatra, Indonesia, erupted in one of the most catastrophic supereruptions in Earth's history. Resurgent uplift of the caldera floor raised Samosir Island 700 m above Lake Toba, exposing valuable lake sediments. To constrain sediment chronology, we collected 173 discrete paleomagnetic 8 cm3 cubes and 15 radiocarbon samples from six sections across the island. Bulk organic 14C ages provide an initial chronostratigraphic framework ranging from ~12 to 46 ka. Natural and laboratory magnetizations were studied using alternating field demagnetization. A generally well-defined primary magnetization is isolated using principal component analysis. Comparison of inclination, and to a lesser degree declination, across independently dated sections suggests paleomagnetic secular variation (PSV) is recorded. Average inclination of −6° is more negative than a geocentric axial dipole would predict, but consistent with an eastward extension of the negative inclination anomaly observed in the western equatorial Pacific. The 14C- and PSV-derived age model constrains resurgent uplift, confirming faster uplift rates to the east and slower rates to the west, while suggesting that fault blocks moved differentially from each other within a generally trapdoor-type configuration.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldiss, D.T., Ghazali, S.A., 1984. The regional geology and evolution of the Toba volcano-tectonic depression, Indonesia. Journal of the Geological Society 141, 487500.CrossRefGoogle Scholar
Chesner, C.A., 2012. The Toba caldera complex. Quaternary International 258, 518.CrossRefGoogle Scholar
Chesner, C.A., Rose, W., 1991. Stratigraphy of the Toba Tuffs and the evolution of the Toba caldera complex, Sumatra, Indonesia. Bulletin of Volcanology 53, 343356.CrossRefGoogle Scholar
Cole, J., Milner, D., Spinks, K., 2005. Calderas and caldera structures: a review. Earth-Science Reviews 69, 126.CrossRefGoogle Scholar
Colman, S.M., Karabanov, E.B., Nelson, C.H., 2003. Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring. Journal of Sedimentary Research 73, 941956.CrossRefGoogle Scholar
de Silva, S.L., Mucek, A.E., Gregg, P.M., Pratomo, I.. 2015, Resurgent Toba—field, chronologic, and model constraints on time scales and mechanisms of resurgence at large calderas. Frontiers in Earth Science 3. https://doi.org/10.3389/feart.2015.00025.CrossRefGoogle Scholar
Fairbanks, R.G., Mortlock, R.A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., Grootes, P.M., Nadeau, M.J., 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24, 17811796.CrossRefGoogle Scholar
Fernex, F., Zarate-del Valle, P., Ramırez-Sanchez, H., Michaud, F., Parron, C., Dalmasso, J., Barci-Funel, G., Guzman-Arroyo, M., 2001. Sedimentation rates in Lake Chapala (western Mexico): possible active tectonic control. Chemical Geology 177, 213228.CrossRefGoogle Scholar
Hatfield, R.G., Stoner, J.S., 2013. Magnetic proxies and susceptibility In: Elias, S.A. (Ed.), Encyclopedia of Quaternary Science. Elsevier Science, Amsterdam, pp. 884898.CrossRefGoogle Scholar
Khokhlov, A., Hulot, G., 2016. Principal component analysis of palaeomagnetic directions: converting a maximum angular deviation (MAD) into an α95angle. Geophysical Journal International 204, 274291.CrossRefGoogle Scholar
King, J.W., Banerjee, S.K., Marvin, J., 1983. A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. Journal of Geophysical Research: Solid Earth 88, 59115921.CrossRefGoogle Scholar
Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International 62, 699718.CrossRefGoogle Scholar
Lund, S., Schwartz, M., Stott, L., 2017. Long-term paleomagnetic secular variation and excursions from the western equatorial Pacific Ocean (MIS2-4). Geophysical Journal International. https://doi.org/10.1093/gji/ggx029.CrossRefGoogle Scholar
Lurcock, P.C., Wilson, G.S., 2012. PuffinPlot: a versatile, user-friendly program for paleomagnetic analysis. Geochemistry, Geophysics, Geosystems 13. https://doi.org/10.1029/2012GC004098CrossRefGoogle Scholar
Mark, D.F., Petraglia, M., Smith, V.C., Morgan, L.E., Barfod, D.N., Ellis, B.S., Pearce, N.J., Pal, J.N., Korisettar, R., 2014. A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: forcing of Quaternary climate and implications for hominin occupation of India. Quaternary Geochronology 21, 90103.CrossRefGoogle Scholar
McElhinny, M.W., McFabben, P.L., 1999. Paleomagnetism: Continents and Oceans. International Geophysics Series 73. Academic Press, San Diego, CA.Google Scholar
Mucek, A.E., Danisik, M., de Silva, S.L., Schmitt, A.K., Pratomo, I., Coble, M.A., 2017. Post-supereruption recovery at Toba caldera. Nature Communications 8, 15248.CrossRefGoogle ScholarPubMed
Ólafsdóttir, S., Reilly, B.T., Bakke, J., Stoner, J.S., Gjerde, M., Bilt, W.G.M. v. d., 2019. Holocene paleomagnetic secular variation (PSV) near 80° N, northwest Spitsbergen, Svalbard: implications for evaluating high Arctic sediment chronologies. Quaternary Science Reviews 210, 90102.CrossRefGoogle Scholar
Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Reilly, B.T., Stonera, J.S., Hatfield, R.G., Abbott, M.B., Marchetti, D.W., Larsen, D.J., Finkenbinder, M.S., Hillman, A.L., Kuehn, S.C., Heil, C.W. Jr., 2018. Regionally consistent Western North America paleomagnetic directions from 15 to 35 ka: assessing chronology and uncertainty with paleosecular variation (PSV) stratigraphy. Quaternary Science Reviews 201, 186205.CrossRefGoogle Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, W., Blackwell, P., Ramsey, C., Buck, C., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Stober, J., Thompson, R., 1979. Magnetic remanence acquisition in Finnish lake sediments. Geophysical Journal International 57, 727739.CrossRefGoogle Scholar
Stoner, J.S., St-Onge, G., 2007. Magnetic stratigraphy in paleoceanography: reversals, excursions, paleointensity, secular variation. In: Hillaire-Marcel, C., De Vernal, A. (Eds.), Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology 1. ScienceDirect, Amsterdam, pp. 99138.CrossRefGoogle Scholar
Storey, M., Roberts, R.G., Saidin, M., 2012. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. Proceedings of the National Academy of Sciences USA 109, 1868418688.CrossRefGoogle ScholarPubMed
Stott, L., Poulsen, C., Lund, S., Thunell, R., 2002. Super ENSO and global climate oscillations at millennial time scales. Science 297, 222226.CrossRefGoogle ScholarPubMed
Talma, A.S., Vogel, J.C., 1993. A simplified approach to calibrating C-14 dates. Radiocarbon 35, 317322.CrossRefGoogle Scholar
van Bemmelen, R., 1939, The volcano-tectonic origin of Lake Toba (North Sumatra). De Ingenieur in Nederlandsch 6, 126140.Google Scholar
Xuan, C., Channell, J.E.T., 2009. UPmag: MATLAB software for viewing and processing u channel or other pass-through paleomagnetic data. Geochemistry, Geophysics, Geosystems 10. https://doi.org/10.1029/2009GC002584.CrossRefGoogle Scholar
Yamazaki, T., Kanamatsu, T., Mizuno, S., Hokanishi, N., Gaffar, E.Z., 2008. Geomagnetic field variations during the last 400 kyr in the western equatorial Pacific: paleointensity-inclination correlation revisited. Geophysical Research Letters 35. https://doi.org/10.1029/2008GL035373.CrossRefGoogle Scholar
Yamazaki, T., Oda, H., 2013. Intensity-inclination correlation for long-term secular variation of the geomagnetic field and its relevance to persistent non-dipole components. In: Channell, J.E.T., Kent, D.V., Lowrie, W., Meert, J.G. (Eds.), Timescales of the Paleomagnetic Field. Vol. 6. Wiley, Hoboken, NJ, pp. 287298.CrossRefGoogle Scholar
Zijderveld, J., 1967. The natural remanent magnetizations of the exeter volcanic traps (Permian, Europe). Tectonophysics 4, 121153.CrossRefGoogle Scholar
Supplementary material: PDF

Solada et al. Supplementary Materials

Solada et al. Supplementary Materials

Download Solada et al. Supplementary Materials(PDF)
PDF 190.7 KB