Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:23:12.343Z Has data issue: false hasContentIssue false

Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation

Published online by Cambridge University Press:  20 January 2017

Claire Delhon*
Affiliation:
ArScAn, Maison de l’Archéologie et de l’Ethnologie, 21 Allée de l’Université, F92023 Nanterre Cedex, France
Anne Alexandre
Affiliation:
CEREGE-CNRS, Europôle Méditerranéen de l’Arbois, B.P.80, F13545 Aix-en-Provence Cedex 04, France
Jean-François Berger
Affiliation:
CRA-CNRS, 250 Rue Albert Einstein, Sophia Antipolis, F06560 Valbonne, France
Stéphanie Thiébault
Affiliation:
ArScAn, Maison de l’Archéologie et de l’Ethnologie, 21 Allée de l’Université, F92023 Nanterre Cedex, France
Jacques-Léopold Brochier
Affiliation:
C.A.P. Valence, UMR 5594 du CNRS, 4 place des Ormeaux, F26000 Valence, France
Jean-Dominique Meunier
Affiliation:
CEREGE-CNRS, Europôle Méditerranéen de l’Arbois, B.P.80, F13545 Aix-en-Provence Cedex 04, France
*
*Corresponding author. E-mail address: delhon@mae.u-paris10.fr (C. Delhon).

Abstract

The reliability of phytolith assemblage analysis for characterizing Mediterranean vegetation is investigated in this study. Phytolith assemblages are extracted from modern and buried Holocene soils from the middle Rhône valley (France). The relation between modern phytolith assemblages and the surrounding vegetation, as well as between fossil assemblages and contemporaneous vegetation, already reconstructed through other proxies, is discussed. We demonstrate that the main northwestern Mediterranean biomes are well distinguished by soil phytolith assemblage analysis. In particular, the density of pine and nonconiferous trees (densities expressed relatively to the grass cover) and the overall degree of opening of the vegetation appear well recorded by three phytolith indexes. North Mediterranean vegetation changes during the Holocene period, mainly tree line shifts, pine wood development and deforestation are poorly documented, due to the scarcity of proxy-preserving sites. Phytolith assemblage analysis of soils, buried soils, and sediments appears to be a promising technique to fill this gap.

Type
Articles
Copyright
Elsevier Science (USA)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, A., Meunier, J.D., (1997). Apports des travaux archéologiques du TGV-Méditerranée en vallée du Rhone à l’histoire des paysages et du climat, des temps glaciaires à nos jours. L’Analyse Phytolithique, . CEREGE internal report Google Scholar
Alexandre, A., Meunier, J.D., Lézine, A.M., Vincens, A., and Schartz, D. Phytoliths. indicators of grasslands dynamics during the late Holocene in intertropical Africa. Paleogeography Paleoclimatology Paleoecology 136, (1997). 213 229.CrossRefGoogle Scholar
Alexandre, A., Meunier, J.-D., Mariotti, A., and Soubies, F. Late Holocene phytoliths and carbon-isotope record from a latosol at Salitre, south-central Brazil. Quaternary Research 51, 2 (1999). 187 194.CrossRefGoogle Scholar
Argant, J., (1981). Climat et environnement au Quaternaire dans le bassin du Rhone d’après les données palynologiques. Document du Laboratoire de Géologie de Lyon 111, Google Scholar
Barbero, M., Loizel, R., and Quezel, P. Méditerranée. Les incendies et l’évolution des forêts. La Recherche 22, (1990). 1154 Google Scholar
Barboni, D., Bonnefille, R., Alexandre, A., and Meunier, J.D. Phytoliths as paleoenvironemental indicator at the Middle Awash hominid site, Ethiopia. Paleogeography, Paleoclimatology, Paleoecology 152, (1999). 87 100.Google Scholar
Bartoli, F., (1981). Le cycle biogéochimique du silicium sur roche acide. Application à deux systèmes forestiers tempérés (Vosges). Thesis, Université Nancy I, France.Google Scholar
Bartoli, F., and Guillet, B. Etude comparée des diagrammes phytolithiques et polliniques d’un podzol des Vosges gréseuses. Comptes Rendus de l’Académie des Sciences de Paris 284D, (1977). 353 356.Google Scholar
Beeching, A., Berger, J.F., Brochier, J.L., Ferber, F., Helmer, D., Sidi Maamar, H., (1977). Chasséens: agriculteurs ou éleveurssédentaires ou nomades? Quels types de milieux, d’économies, de sociètès? Actes des 3èmes rencontres méridionales de préhistoire récente. Toulouse 1998 Google Scholar
Berger, J.F., (1977). Le cadre paléogéographique des occupations du bassin du valdainais (Drôme) à l’Holocène. Thesis, Université Paris I, France.Google Scholar
Berger, J.-F., Thiebault, S., (2002). The study and significance of charcoal as an indication of ancient fire: an application to the middle Rhône valley (France). in: Thiébault, S. (Ed.), Charcoal analysis: Methodological Approaches, Palaeoecological Results and Wood Uses. Proceedings of the Second Meeting of Anthracology, Paris., September 2000, Archaeopress, 2541.Google Scholar
Bozarth, S.R. Classification of opal phytoliths formed in selected dicotyledons native to the great plains. Rapp, G., and Mulholland, S.C. Phytolith Systematics: Emerging Issues. (1992). Plenum Press, New York. 193 214.Google Scholar
Bradshaw, R. Forest response to Holocene climatic change. equilibrium or non-equilibrium. Chamber, F.M. Climatic Change and Human Impact on the Landscape. (1993). Chapman and Hall, London. 57 65.Google Scholar
De Beaulieu, J.L., (1977). Contribution pollenanalytique à l’histoire Tardiglaciaire et Holocène de la végétation des Alpes méridionnales françaises. Thesis, Université d’Aix-Marseille III, France.Google Scholar
Delhon, C., (1998). “Identification et interprétation de cortèges phytolithaires et anthracologiques à partir de séquences pédosédimentaires de milieux fluviaux en moyenne vallée du Rhône (Holocène)-Apport à la connaissance de l’anthropisation du milieu.”. DEA, Université de Franche-Comté, France.Google Scholar
Ellis, R.P. A procedure for standardising comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia 12, 4 (1979). 641 671.Google Scholar
Fredlund, G., and Tieszen, L.T. Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography 21, (1994). 321 335.Google Scholar
Fredlund, G., and Tieszen, L. Calibrating grass phytoliths assemblages in climatic terms. application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 136, (1997). 199 211.CrossRefGoogle Scholar
Fredlund, G., and Tieszen, L. Phytolith and carbon evidence for late Quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quaternary Research 47, (1997). 206 217.Google Scholar
Geis, J.W. Biogenic silica in selected species of deciduous angiosperms. Soil Science 116, 2 (1973). 113 119.Google Scholar
Heinz, C., and Thiébault, S. Characterization and palaeoecological significance of archaeological charcoal assemblages during late and post-glacial phases in southern France. Quaternary Research 50, (1998). 56 68.Google Scholar
Inoue, K., and Sase, T. Paleoenvironmental history of post-Toya ash tephric deposits and paleosols at Iwate volcano, Japan, using eolian dust content and phytolith composition. Quaternary International 34-36, (1996). 206 217.Google Scholar
Jalut, G., (1974). “Evolution de la végétation et variations climatiques durant les quinze derniers millénaires dans l’extrémité orientales des Pyrénées.”. Thesis, Université de Toulouse, France.Google Scholar
Kealhofer, L., and Penny, D. Fourteen thousand years of environmental change in northeast Thailand. Review of Palaeobotany and Palynology 103, (1998). 83 93.Google Scholar
Kelly, E.F., (1990). “Method for extracting opal phytoliths from soils and plant material.”. Internal Doc., Dep. Agronomy, Colorado state university, Fort Collins.Google Scholar
Klein, R.L., and Geis, J.W. Biogenic silica in the Pinaceae. Soil Science 123, 3 (1978). 145 156.Google Scholar
Kurman, M.H. An opal phytoliths and palynomorph study of extant and fossil soils in Kansas (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 49, (1985). 217 235.CrossRefGoogle Scholar
Laroche, J. La silice et les plantes supérieures. Revue de Cytologie et de Biologie Végétale 40, (1976). 15 45.Google Scholar
Leveau, P., and Provansal, M., (1993). “Archéologie et Environnement: de la Sainte Victoire aux Alpilles.”. Publications Université de Provence, Google Scholar
Mulholland, S.C. A morphological classification of grass silica bodies. Rapp, G., and Mulholland, S.C. Phytolith Systematics.Emerging Issues. (1992). Plenum Press, New York. 129 147.Google Scholar
Ozenda, P. Biogéographie végétale. (1964). Douin, Paris.Google Scholar
Ozenda, P. “Végétation du continent européen.”. (1994). Delachaux et Niestlé, Paris.Google Scholar
Piperno, D.R. Phytolith Analysis. An Archaeological and Geological Perspective. (1988). Academic Press, New York.Google Scholar
Planchais, N., (1985). Analyses polliniques du remplissage holocène de la lagune de Cnet (plaine du Roussillon, Pyrénées orientales). in: De Beaulieu, J.L., Pons, A. (Eds.), Palaeohydrological Changes in the Temperate Zone in the Last 15000 Years, Ecologia Mediterranea, XI, (1), 117127.Google Scholar
Pons, A., and Thinon, M. The role of fire from palaeoecological data. Ecologia Mediterranea XIII, 4 (1987). 3 11.CrossRefGoogle Scholar
Quezel, P. Les grandes structures de végétation en région Méditerranéenne. facteurs déterminants dans leur mise en place post-glaciaire. Geobios 32, 1 (1999). 19 32.CrossRefGoogle Scholar
Rameau, J.C., Mansion, D., and Dumé, G. Flore Forestièere Française, guide écologique illustré. Tome 1: Plaines et Collines. (1994). Institut pour le développement forestier, Paris.Google Scholar
Runge, F. The opal phytolith inventory of soils in Central Africa. Quantities, shapes, classification and spectra. Review of Palaeobotany and Palynology 107, (1999). 23 53.Google Scholar
Scurfield, G., Anderson, C.A., and Segnit, E.R. Silica in woody stems. Australian Journal of Botany 22, (1974). 211 229.Google Scholar
Soil Survey Staff, (1975). “Soil Taxonomy.”. U.S. Dept. Agric. Hb. 436, Washington D.C.Google Scholar
Thiébault, S., (1988). “L’homme et le milieu végétal: analyses anthracologiques de six gisements des Préalpes au Tardi- et au Postglaciaire.”. Documents de l’Archéologie Française 15 Google Scholar
Trabaud, L., (1989). “Les feux de forêt-mécanismes, comportements et environnement.”. Francesélection, Google Scholar
Triat-Laval, H., (1978). “Contribution pollenanalytique à l’histoire Tardiglaciaire et postglaciaire de la végétation de la basse vallée du Rhone.”. Thesis, Université d’Aix-Marseille III, France.Google Scholar
Tsutsuki, K., Kondo, R., Shiraishi, H., Kuwatsuka, S. Ohnohara Wetland Research group Composition of lignin-degradation products, lipids, and opal phytoliths in a peat profile accumulated since 32000 years B.P. in central Japan. Soil Science Plant Nutrition 39, 3 (1993). 463 474.Google Scholar
Twiss, P.C. Predicted world distribution of C3 and C4 grass phytoliths. Rapp, G., and Mulholland, S.C. Phytolith Systematics.Emerging Issues. (1992). Plenum Press, New York. 113 128.Google Scholar
Twiss, P.C., Suess, E., Smith, R.M., (1969). Morphological classification of grass phytoliths. Soil Science Society of America Proceedings 33, 109115.CrossRefGoogle Scholar
Verdin, P, Berger, J.F., Lopez-Saez, J.A., (2001). Contribution of phytolith analysis to the understanding of historical agrosystems in the Rhône mid-valley (Southern France). in: Meunier, J.D., Colin, F. (Eds.), Phytoliths: Applications in Earth Sciences and Human History, A.A. Balkema Publishers, pp. 155172.Google Scholar
Vernet, J.L., and Thiébault, S. An approach to northwestern Mediterranean recent prehistoric vegetation and ecologic implications. Journal of Biogeography 14, (1987). 117 127.Google Scholar
Vernet, J.L., Thiébault, S., Heinz, C., (1987). Nouvelles données sur la végétation préhistorique postglacaire méditerranéenne d’aprés l’analyse anthracologique. Actes du colloque international “Premières communautés paysannes en Méditerranée occidentale,” Montpellier 1983, CNRS, 8794.Google Scholar