Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T09:09:07.094Z Has data issue: false hasContentIssue false

A Quantitative Holocene Climatic Record from Diatoms in Northern Fennoscandia

Published online by Cambridge University Press:  20 January 2017

Atte Korhola
Affiliation:
Department of Ecology and Systematics, P.O. Box 17 (Arkadiankatu 7), University of Helsinki, FIN-00014, Finland
Jan Weckström
Affiliation:
Department of Ecology and Systematics, P.O. Box 17 (Arkadiankatu 7), University of Helsinki, FIN-00014, Finland
Lasse Holmström
Affiliation:
Rolf Nevanlinna Institute, P.O. Box 4 (Yliopistonkatu 5), University of Helsinki, FIN-0014, Finland
Panu Erästö
Affiliation:
Rolf Nevanlinna Institute, P.O. Box 4 (Yliopistonkatu 5), University of Helsinki, FIN-0014, Finland

Abstract

A diatom-based calibration model for predicting summer temperatures was developed using climatically sensitive subarctic lakes in northern Fennoscandia. The model was applied to a sediment core from a treeline lake to infer trends in Holocene climate. The record exhibits long-term variations, as well as a series of shorter-term fluctuations on a time scale of centuries. Summers were warmest in the area about 6200 cal yr B.P. and featured distinct cooling episodes around 8300, 7200, 4200, 3000, and 400 cal yr B.P., most of these coinciding with some known climate events (e.g., the 8200 cal yr B.P. event and the Little Ice Age). The similarity of the observed shifts with the pacings of climate events from marine and ice-core records represents evidence for coupled ocean–atmosphere forcing of the regional climate.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U.(1997). Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 25, /issue>483486.Google Scholar
Anderson, D.E., Binney, H.A., Smith, M.A.(1998). Evidence for abrupt climatic change in northern Scotland between 3900 and 3500 calendar years BP. The Holocene, 8, 97103.Google Scholar
Anderson, N.J. (1993). Natural versus anthropogenic change in lakes: The role of the sediment record. Trends in Ecology and Evolution, 8, 356361.Google Scholar
Anderson, N.J. (1995). Using the past to predict the future: Lake sediments and the modelling of limnological disturbance. Ecological Modelling, 78, 149172.Google Scholar
Anderson, N.J., Odgaard, B.V., Segerström, U., Renberg, I.(1996). Climate–lake interactions recorded in varved sediments from a Swedish boreal forest lake. Global Change Biology, 2, 399405.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., Gagnon, J.-M.(1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344348.Google Scholar
Barnekow, L. (1999). Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern Sweden, based on macrofossil and pollen records. The Holocene, 9, 253265.Google Scholar
Bianchi, G.G., McCave, D.(1999). Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 397, 515517.Google Scholar
Birks, H.J.B.. Quantitative palaeoenvironmental reconstructions. Maddy, D., Brew, J.S.(1995). Statistical Modelling of Quaternary Science Data. Quaternary Science Association, Cambridge.161254.Google Scholar
Birks, H.J.B. (1998). Numerical tools in palaeolimnology—Progress, potentialities, and problems. Journal of Paleolimnology, 20, 307332.CrossRefGoogle Scholar
Birks, H.J.B., Line, L.M., Juggins, S., Stevenson, A.C., ter Braak, C.J.F.(1990). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London B, 327, 263278.Google Scholar
Blom, T., Korhola, A., Weckström, J.. Physical and chemical characterisation of small subarctic lakes in Finnish Lapland with special reference to climate change scenarios. Lemmelä, R., Helenius, N.(1998). Proceedings of The Second International Conference on Climate and Water 17–20 August, Espoo, Finland.576587.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G.(1997). A pervasive millenial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 12571266.CrossRefGoogle Scholar
Borcard, D., Legendre, P., Drapeau, P.(1992). Partialling out the spatial component of ecological variation. Ecology, 73, 10451055.Google Scholar
Charles, D., Smol, J.P.. Long-term chemical changes in lakes: Quantitative inferences using biotic remains in the sediment record. Baker, L.(1994). Environmental Chemistry of Lakes and Reservoirs. Am. Chem. Soc, Washington.331.Google Scholar
Chaudhuri, P., Marron, J.S.(1999). SiZer for exploration of structures in curves. Journal of the American Statistical Association, 94, 807823.Google Scholar
Dahl-Jensen, D., Mosegaard, K., Gundenstrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W., Balling, N.(1998). Past temperatures directly from the Greenland ice sheets. Nature, 282, 268271.Google Scholar
Denton, G.H., Karlén, W.(1973). Holocene climate variations—Their pattern and possible cause. Quaternary Research, 3, 155205.CrossRefGoogle Scholar
Douglas, M.S.V., Smol, J.P., Blake, W. Jr.(1994). Marked post 18th century environmental change in high-arctic ecosystems. Science, 266, 416419.Google Scholar
Eronen, M., Huttunen, P.(1987). Radiocarbon-dated subfossil pines from Finnish Lappland. Geografiska Annaler, 69A, 297304.CrossRefGoogle Scholar
Eronen, M., Hyvärinen, H., Zetterberg, P.(1999). Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged Scots pines dated by tree-rings. The Holocene, 9, 569580.Google Scholar
Grove, J.M. (1988). The Little Ice Age. Methuen, London.Google Scholar
Hill, M.O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427432.Google Scholar
Hu, F.S., Slawinski, D., Wright, H.E. Jr., Ito, E., Johnson, R.G., Kelts, K.R., McEwan, R.F., Boedigheimer, A.(1999). Abrupt changes in North American climate during early Holocene times. Nature, 400, 437440.Google Scholar
Hyvärinen, H., Alhonen, P.(1994). Holocene lake-level changes in the Fennoscandian tree-line region, western Finnish Lapland:Diatom and cladoceran evidence. The Holocene, 4, 251258.CrossRefGoogle Scholar
Klitgaard-Kristensen, D., Sejrup, H.P., Haflidason, H., Johnsen, S., Spurk, M.(1998). A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation?. Journal of Quaternary Science, 13, 165169.Google Scholar
Korhola, A. (1994). Radiocarbon evidence for rates of lateral expansion in raised mires in southern Finland. Quaternary Research, 42, 299307.CrossRefGoogle Scholar
Korhola, A. (1995). Holocene climatic variations in southern Finland reconstructed from peat-initiation data. The Holocene, 5, 4358.Google Scholar
Korhola, A. (1996). Initiation of a sloping mire complex in southwestern Finland: Autogenic versus allogenic controls. Écoscience, 3, 216222.Google Scholar
Korhola, A. (1999). Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography, 22, 357373.CrossRefGoogle Scholar
Korhola, A., Tolonen, K., Turunen, J., Jungner, H.(1996). Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon, 37, 575584.Google Scholar
Korhola, A., Alm, J., Tolonen, K., Turunen, J., Jungner, H.(1996). Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millenia in a raised mire. Journal of Quaternary Science, 11, 161165.Google Scholar
Korhola, A., Lotter, A.F., Birks, H.J.B., Cameron, N.G.. Climate history as recorded by ecologically sensitive arctic and alpine lakes in Europe during the last 10,000 years: A multi-proxy approach (CHILL-10,000).(2000). Proceedings of the European Climate Science Conference, Vienna City Hall, 19–23 October, 1998.Google Scholar
Korhola, A., Sorvari, S., Rautio, M., Appleby, P.G., Dearing, J.A., Hy, Y., Rose, N., Lami, A., Cameron, N.G.(2000). A multi-proxy analysis of climate impacts on recent development of subarctic Lake Saanajärvi in Finnish Lapland. Journal of Paleolimnology Google Scholar
Kutzbach, J.E., Street-Perrot, F.A.(1985). Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr B.P. Nature, 317, 130134.CrossRefGoogle Scholar
Lamb, H.H. (1995). Climate, History and the Modern World. Routledge, London.Google Scholar
Lotter, A.F., Birks, H.J.B., Hofmann, W., Marchetto, A.(1997). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology, 18, 395420.Google Scholar
Lundqvist, J.. Kvartärtiden—jordarterna. Lindström, J.J., Lundqvist, J., Lundqvist, T.H.(1991). Sveriges Geologi från Urtid till Nutid. Studenlitteratur, Lund.231354.Google Scholar
Mann, M.E., Bradley, R.S., Hughes, M.K.(1999). Northern Hemisphere temperatures during the past Millenium: Inferences, uncertainties, and limitations. AGU Geophysical Research Letters, 26, 759769.Google Scholar
Martens, H., Naes, T.(1989). Multivariate Calibration. Wiley, Chichester.Google Scholar
O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., Whitlow, S.I.(1995). Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270, 19621964.CrossRefGoogle Scholar
Økland, R.H., Eilertsen, O.(1994). Canonical correspondence analysis with variation partitioning: Some comments and an application. Journal of Vegetation Sciences, 5, 117126.Google Scholar
Olander, H., Korhola, A., Blom, T.(1997). Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: Developing a tool for paleotemperature reconstructions. Journal of Paleolimnology, 18, 4559.CrossRefGoogle Scholar
Olander, H., Birks, H.J.B., Korhola, A., Blom, T.(1999). An expanded calibration model for inferring lake-water and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene, 9, 279294.Google Scholar
Overpeck, J.K., Hughen, D., Hardy, R., Bradley, R., Case, M., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G.(1997). Arctic environmental change of the last four centuries. Science, 278, 12511256.Google Scholar
Pienitz, R., Smol, J.P., Birks, H.J.B.(1995). Assessment of freshwater diatoms as quantitative indicators of past climate change in the Yukon and Northwest Territories, Canada. Journal of Paleolimnology, 13, 2149.Google Scholar
Rietti-Shati, M., Shemesh, A., Karlen, W.(1998). A 3000-year climatic record from biogenic silica oxygen isotopes in an equatorial high-altitude lake. Science, 281, 980982.Google Scholar
Robertson, I., Lucy, D., Baxter, L., Pollard, A.M., Aykroyd, R.G., Barker, A.C., Carter, A.H.C., Switsur, V.R., Waterhouse, J.S.(1999). A kernel-based Bayesian approach to climatic reconstruction. The Holocene, 9, 495500.Google Scholar
Rosén, P., Døbakk, E., Renberg, I., Nilsson, M., Hall, R.(2000). Near-infrared spectrometry (NIRS): A new tool for inferring past climatic changes from lake sediments. The Holocene, 10, 161166.Google Scholar
P, Rosén, Hall, R., Korsman, T., Renberg, I. in press,. Diatom transfer-functions for quantifying past air temperature, pH, and total organic carbon concentration from lakes in northern Sweden. Journal of Paleolimnology.Google Scholar
Rouse, W.R., Douglas, M.S.V., Hecky, R.E., Hershey, A.E., Kling, G.W., Lesack, L., Marsh, P., McDonald, M., Nicholson, B.J., Roulet, N.T., Smol, J.P.. Effects of climate change on the freshwaters of Arctic and subarctic North America. Cushing, C.E.(1997). Freshwater Ecosystems and Climate Change in North America. Wiley, Chichester.5584.Google Scholar
Ruppert, D., Sheather, S.J., Wand, M.P.(1995). An effective bandwidth selector for local least squares regression. Journal of the American Statistical Association, 90, 12571270.Google Scholar
Seppä, H. (1996). Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia, 174, 196.Google Scholar
Seppä, H., Weckström, J.(1999). Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajavri, Finland. Écoscience, 6, 621635.Google Scholar
Smol, J.P.. Paleolimnological approaches to the evaluation and monitoring of ecosystem health: Providing a history for environmental damage and recovery. Rapport, D.J., Caudet, C.L., Calow, P.(1995). Evaluating and Monitoring the Health of Large-Scale Ecosystems. Springer-Verlag, Berlin.301318.Google Scholar
Sorvari, S., Korhola, A.(1998). Recent diatom assemblage changes in subarctic Lake Saanajärvi, NW Finnish Lapland, and their palaeoenvironmental implications. Journal of Paleolimnology, 20, 205215.Google Scholar
Stager, J.C., Cumming, B., Meeker, L.(1997). A high-resolution 11,400-yr diatom record from Lake Victoria, east Africa. Quaternary Research, 47, 8189.Google Scholar
Street-Perrott, F.A., Perrot, R.A.(1990). Abrupt climate fluctuations in the tropics: The influence of Atlantic Ocean circulation. Nature, 343, 607612.Google Scholar
Stuiver, M., Reimer, P.J.(1993). Extended 14C database and revised CALIB 3.0 14C calibration program. Radiocarbon, 35, 215230.CrossRefGoogle Scholar
ter Braak, C.F.J. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 11671179.CrossRefGoogle Scholar
ter Braak, C.F.J., van Dam, H.(1989). Inferring pH from diatoms: A comparison of old and new calibration methods. Hydrobiologia, 178, 209223.CrossRefGoogle Scholar
ter Braak, C.J.F., Juggins, S.(1993). Weighted averaging partial least-squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269/270, 485502.Google Scholar
ter Braak, C.J.F., Verdonschot, P.F.M.(1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Science, 57, 255289.Google Scholar
C. J. F, ter Braak, Smilauer, P.(1998). CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination, Version 4. Microcomputer Power,Ithaca, NY.Google Scholar
Von Grafenstein, U., Erlenkeuser, H., Muller, J., Jouzel, J., Johnsen, S.(1998). The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics, 14, 7381.Google Scholar
Weckström, J., Korhola, A., Blom, T.(1997). The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arctic and Alpine Research, 29, 7592.Google Scholar
Weckström, J., Korhola, A., Blom, T.(1997). Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia, 347, 171184.CrossRefGoogle Scholar