Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T06:04:07.826Z Has data issue: false hasContentIssue false

Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers

Published online by Cambridge University Press:  01 June 2012

Michael Zech*
Affiliation:
University of Bayreuth, Universitätsstr. 30, D-953440 Bayreuth, Germany Soil Physics Department, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
Simon Rass
Affiliation:
University of Bayreuth, Universitätsstr. 30, D-953440 Bayreuth, Germany
Björn Buggle
Affiliation:
Soil Physics Department, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
Manfred Löscher
Affiliation:
Max-Reger-Weg 3, D-69181 Leimen, Germany
Ludwig Zöller
Affiliation:
University of Bayreuth, Universitätsstr. 30, D-953440 Bayreuth, Germany
*
Corresponding author at: Chair of Geomorphology, University of Bayreuth, Universitätsstr. 30, D-953440 Bayreuth, Germany. Fax: + 49 921 552314. Email Address:michael_zech@gmx.de

Abstract

This study contributes to the paleoenvironmental reconstruction of the loess–paleosol sequence of Nussloch, Germany, by using n-alkanes as plant leaf-wax-derived lipid biomarkers. We found that n-alkane patterns and concentrations in the Saalian loess and the last interglacial Eemian paleosol of Nussloch point to very strong degradation and prevailing deciduous vegetation. Degradation effects in the overlying paleosols and loess layers are less pronounced and allow for the application of an end-member mixing model to estimate vegetation changes semi-quantitatively. Our findings highlight the potential for the interpretation of degradation-corrected n-alkane ratios. n-Alkane modelling results for loess layers, paleosols and an in-filled paleochannel dated to ~ 60–32 ka suggest that up to ~ 50% of the n-alkanes were derived from deciduous trees or shrubs. This finding is in agreement with the abundant occurrence of wood fragments and indicates a highly variable and dynamic landscape dominated by tundra shrubland. On the other hand, deciduous trees or shrubs did not contribute significantly to the soil organic matter in the late Weichselian loess layers and the intercalated Gelic Gleysols (~ 32–18 ka).

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Contributed equally to this manuscript.

References

Antoine, P., Rousseau, D.-D., Zöller, L., Lang, A., Munaut, A.-V., Hatté, C., and Fontugne, M. High-resolution record of the last Interglacial-glacial cycle in the Nussloch loess–paleosol sequences, Upper Rhine Area, Germany. Quaternary International 76–77, (2001). 211229.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H., and Zöller, L. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, (2009). 29552973.CrossRefGoogle Scholar
Bente, B., and Löscher, M. Sedimentologische, pedologische und stratigraphische Untersuchungen an Lössen südlich Heidelberg. Heidelberger Geowissenschaftliche Abhandlungen 84, (1987). 917.Google Scholar
Bibus, E., Bludau, W., Bross, C., and Rähle, W. Der Altwürm- und Rißabschnitt im Profil Mainz Weisenau und die Eigenschaften der Mosbacher Humuszonen. Frankfurter Geowissenschaftliche Arbeiten 20, (1996). 2152.Google Scholar
Bibus, E., Frechen, M., Kösel, M., and Rähle, W. Das jungpleistozäne Lößprofil Nußloch (SW-Wand) im Aufschluss der Heidelberger Zement AG. Eiszeitalter und Gegenwart 56, (2007). 227255.Google Scholar
Bourbonniere, R.A., Telford, S.L., Ziolkowski, L.A., Lee, J., Evans, M.S., and Meyers, P.A. Biogeochemical marker profiles in cores of dated sediments from large North American Lakes. Eganhouse, R.P. Molecular Markers in Environmental Geochemistry. (1997). American Chemical Society Symposium Series, Washington DC.. 133150.Google Scholar
Buggle, B., Wiesenberg, G.L., and Glaser, B. Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects. Applied Geochemistry 196, (2010). 86106.Google Scholar
Cranwell, P.A. Chain-length distribution of n-alkanes from lake sediments in relation to post glacial environmental change. Freshwater Biology 3, (1973). 259265.Google Scholar
Cranwell, P.A. Diagenesis of free and bound lipids in terrestrial detritus deposits in a lacustrine sediment. Organic Chemistry 3, (1981). 7989.Google Scholar
Dodd, R., and Poveda, M. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochemical Systematics and Ecology 31, (2003). 12571270.CrossRefGoogle Scholar
Eglinton, G., and Hamilton, R.J. Leaf epicuticular waxes. Science 156, (1967). 13221335.Google Scholar
Eglinton, T., and Eglinton, G. Molecular proxies for paleoclimatology. Earth and Planetary Science Letters 275, (2008). 116.CrossRefGoogle Scholar
Gocke, M., Kuzyakov, Y., and Wiesenberg, G.L. Rhizoliths in loess—evidence for post-sedimentary incorporation of root-derived organic matter in terrestrial sediments as assessed from molecular proxies. Organic Geochemistry 41, (2010). 11981206.CrossRefGoogle Scholar
Grimalt, J.O., Torras, E., and Albaigés, J. Bacterial rework of sedimentary lipids during sample storage. Organic Geochemistry 13, (1988). 741746.CrossRefGoogle Scholar
Hatté, C., Fontugne, M., Rousseau, D.-D., Antoine, P., Zöller, L., Tisnérat-Laborde, N., and Bentaleb, I. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology 26, (1998). 583586.2.3.CO;2>CrossRefGoogle Scholar
Hatté, C., Antoine, P., Fontugne, M., Rousseau, D.-D., Tisnérat-Laborde, N., and Zöller, L. New chronology and organic matter δ13C paleoclimatic significance of Nußloch loess sequence (Rhine Valley, Germany). Quaternary International 62, (1999). 8591.Google Scholar
Hatté, C., and Guiot, J. Paleoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nußloch loess sequence (Rhine Valley, Germany). Climate Dynamics 25, (2005). 315327.Google Scholar
Hendl, M. Klima. Liedke, H., and Marcinek, J. Physische Geographie Deutschlands. (1994). Justus Perthes Verlag, Gotha. 23120.Google Scholar
Huntley, B., Alfano, M.J., Allen, J.E., Pollard, D., Tzdakis, P.C., and de Beaulieu, J.-L. European vegetation during Marine Oxygen Isotope Stage-3. Quaternary Research 59, (2003). 195212.CrossRefGoogle Scholar
Kind, C.-J. Eine neue mittelpaläolithische Freiland-Fundstelle bei Nußloch (Rhein-Neckar-Kreis). Archäologische Ausgrabungen Baden-Württemberg. (1998). 2326.Google Scholar
Kind, C.-J. Die jungpleistozänen Rinnenfüllungen von Nußloch (Rhein-Neckar-Kreis). Archäologische Ausgrabungen Baden-Württemberg (1999). 1719.Google Scholar
Klink, H.-J., and Slobodda, S. Vegetation. Liedtke, H., and Mercinek, J. Physische Geographie Deutschlands. (1994). Justus Perthes Verlag, Gotha. 157196.Google Scholar
Kolattukudy, P.E. Biochemistry of plant waxes. Kolattukudy, P.E. Chemistry and Biochemistry of Natural Waxes. (1976). Elsevier, Amsterdam. 290349.Google Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. World Map of Köppn-Geiger climate classification updated. Meteorologische Zeitschrift 15, (2006). 259263.Google Scholar
Kukla, G. Pleistocene land-sea correlations. 1. Europe. Earth-Sciences Review 13, (1977). 307374.Google Scholar
Ladygina, N., Dedyukhina, E.G., and Vainshtein, M.B. A review on microbial synthesis of hydrocarbons. Process Biochemistry 41, (2006). 10011014.CrossRefGoogle Scholar
Lang, A., Hatté, C., Rousseau, D.-D., Antoine, P., Fontugne, M., Zöller, L., and Hambach, U. High-resolution chronologies for loess: comparing AMS 14C and optical dating results. Quaternary Science Reviews 22, (2003). 953959.Google Scholar
Löscher, M., and Zöller, L. Lössforschung im nordwestlichen Kraichgau. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins 83, (2001). 317326.Google Scholar
Meyers, P.A., and Ishiwatari, R. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, (1993). 867900.Google Scholar
Moine, O., Rousseau, D.-D., and Antoine, P. Terrestrial molluscan records of Weichselian Lower to Middle Pleniglacial climatic changes from the Nussloch loess series (Rhine Valley, Germany): the impact of local factors. Boreas 34, (2005). 363380.CrossRefGoogle Scholar
Müller, T., Oberdorfer, E., and Philippi, G. Potentielle natürliche Vegetation und Naturräumliche Einheiten - als Orientierung für ökologisch-planerische Aufgabenstellungen in Baden-Württemberg. Untersuchungen zur Landschaftsplanung 21, (1992). Google Scholar
Nott, C.J., Xie, S., Avsejs, L.A., Maddy, D., Chambers, F.M., and Evershed, R.P. n-Alkane distributions in ombotrophic mires as indicators of vegetation change related to climatic variation. Organic Geochemistry 31, (2000). 231235.Google Scholar
Novothny, A., Frechen, M., Horváth, E., Bradák, B., Oches, E., McCoy, W., and Stevens, T. Luminescence and amino acid racemization chronology of the loess–paleosol sequence at Sütto, Hungary. Quaternary International 198, (2009). 6276.CrossRefGoogle Scholar
Oches, E., and McCoy, W. Historical developments and recent advances in amino acid geochronology applied to loess research: examples from North America, Europe and China. Earth-Science Reviews 54, (2001). 173192.CrossRefGoogle Scholar
Rogers, K.M., Collen, J.D., Johnston, J.H., and Elgar, N.E. A geochemical appraisal of oil seeps from the East Coast Basin, New Zealand. Organic Geochemistry 30, (1999). 593605.Google Scholar
Rousseau, D.-D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontungne, M., Ben Othman, D., Luck, J.-M., Moine, O., Bentaleb, I., Jolly, D., and Labonne, M. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during Last Glaciation. Quaternary Science Review 21, (2002). 15771582.CrossRefGoogle Scholar
Rousseau, D.-D., Sima, A., Antoine, P., Hatté, C., Lang, A., and Zöller, L. Link between European and North-Atlantic abrupt climate changes over the last glaciation. Geophysical Research Letters 34, (2007). L22713 http://dx.doi.org/10.1029/2007GL031716 Google Scholar
Sabelberg, U., and Löscher, M. Neue Beobachtungen zur Würmlöß-Stratigraphie südlich Heidelberg. Nagl, H. Festschrift J. (1978). Fink, Wien. 473487.Google Scholar
Schatz, A.-K., Zech, M., Buggle, B., Gulyás, S., Hambach, U., Markovic, S.B., Sümegi, P., and Scholten, T. The late Quaternary loess record of Tokaj, Hungary: reconstructing paleoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quaternary International 240, 1–2 (2011). 5261.Google Scholar
Schwark, L., Zink, K., and Lechtenbeck, J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30, (2002). 463466.2.0.CO;2>CrossRefGoogle Scholar
Semmel, A. Das Süddeutsche Stufenland mit seinen Grundgebirgsrändern. Liedke, H., and Marcinek, J. Physische Geographie Deutschlands. (1994). Julius Perthes Verlag, Gotha. 389438.Google Scholar
Tissoux, H., Valladas, H., Voinchet, P., Reyss, J.L., Mercier, N., Falguères, C., Bahain, J.J., Zöller, L., Antoine, P., and Rousseaux, D.D. OSL and ESR studies of aeolian quartz from the Upper Pleistocene loess sequence of Nussloch (Germany). Quaternary Geochronology 5, (2010). 131136.Google Scholar
Wiesenberg, G.L., Lehndorff, E., and Schwark, L. Thermal degradation of rye and maize straw: lipid pattern changes as a function of temperature. Organic Geochemisty 37, (2009). 19731982.CrossRefGoogle Scholar
Xie, S., Chen, F., Wang, Z., Wang, H., Gu, Y., and Huang, Y. Lipid distributions in loess–paleosol sequences from northwest China. Organic Geochemistry 34, (2003). 10711079.Google Scholar
Zech, M., and Glaser, B. Improved compound-specific δ13C analysis of n-alkanes for application in paleoenvironmental studies. Rapid Communications in Mass Spectrometrie 22, (2008). 135142.CrossRefGoogle Scholar
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., Wiesenberg, G., and Zöller, L. Reconstructing Quaternary vegetation history in the Carpathian Basin, SE Europe, using n-alkane biomarkers as molecular fossils: problems and possible solutions, potential and limitations. Eiszeitalter und Gegenwart – Quaternary Science Journal 58, (2009). 148155.Google Scholar
Zech, M., Andreev, A., Zech, R., Müller, S., Hambach, U., Frechen, M., and Zech, W. Quaternary vegetation changes derived from a loess-like permafrost paleosol sequence in northeast Siberia using alkane biomarker and pollen analyses. Boreas 39, (2010). 540550.CrossRefGoogle Scholar
Zech, M., Pedentchouk, N., Buggle, B., Leiber, K., Kalbitz, K., Markovic, S., and Glaser, B. Effect of leaf-litter decomposition and seasonality on D/H isotope ratios of n-alkane biomarkers. Geochimica et Cosmochimica Acta 75, (2011). 49174928.CrossRefGoogle Scholar
Zech, M., Zech, R., Buggle, B., and Zöller, L. Novel methodological approaches in loess research – interrogating biomarkers and compound-specific stable isotopes. Eiszeitalter & Gegenwart – Quaternary Science Journal 60, 1 (2011). 170187.Google Scholar
Zech, M., Krause, T., Meszner, S., and Faust, D. Incorrect when uncorrected: reconstructing vegetation history using n-alkane biomarkers in loess–paleosol sequences—a case study from the Saxonian loess region, Germany. Quaternary International (2012). http://dx.doi.org/10.1016/j.quaint.2012.01.023 Google Scholar
Zhang, Z., Zhao, M., Eglinton, G., Lu, H., and Huang, C. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quaternary Science Reviews 20, (2006). 575594.Google Scholar
Zöller, L., Streme, H.E., and Wagner, G.A. Löss-Paleoboden-Sequenzen von Nieder-, Mittel und Oberrhein. Chemical Geology: Isotope Geoscience Section 73, (1988). 3962.Google Scholar
Zöller, L., and Wagner, G.A. Thermoluminescence dating of loess—recent develoments. Quaternary International 7–8, (1990). 119128.Google Scholar