Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T08:49:04.350Z Has data issue: false hasContentIssue false

Reevaluation of Late Pleistocene loess profiles at Remizovka (Kazakhstan) indicates the significance of topography in evaluating terrestrial paleoclimate records

Published online by Cambridge University Press:  15 February 2018

Tobias Sprafke*
Affiliation:
Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Kathryn E. Fitzsimmons
Affiliation:
Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Christoph Grützner
Affiliation:
COMET, Bullard Laboratories, Cambridge University, Madingley Road, Cambridge, CB3 0EZ, United Kingdom Friedrich Schiller University Jena, Institute of Geological Sciences, Burgweg 11, Jena, Germany
Austin Elliot
Affiliation:
COMET, Dept. of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, United Kingdom
Laurent Marquer
Affiliation:
Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany Laboratoire Géographie de l’environnement, Université de Toulouse Jean Jaurès, GEODE UMR 5602, Toulouse, France
Saida Nigmatova
Affiliation:
Institute of Geological Sciences K. Satpaeva, Ministry of Education and Science of Kazakhstan, 69A Kabanbay Batyra St. #279, 050010 Almaty, Kazakhstan
*
*Corresponding author at: Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland. E-mail address: tobias.spafke@giub.unibe.ch (T. Sprafke).

Abstract

We report on a loess-paleosol sequence (LPS) near Remizovka, located in the northern Tian Shan piedmont of southeastern Kazakhstan. This site represents a key record for Late Pleistocene climatic fluctuations at the intersection of major northern hemisphere climate subsystems. This paper develops a synthesized dataset of previous conflicting studies at Remizovka by characterizing their (paleo)topographic context, which had remained previously overlooked. Digital elevation models, satellite images, and archival photography characterize recent topographic developments. Two well-developed pedocomplexes, which we investigate in detail and date by luminescence mark the paleotopography during Marine Oxygen Isotope Stage (MIS) 5. Peak dust accumulation rates here occurred during the middle MIS 5 and MIS 4/early MIS 3. These are partially comparable with records from neighboring regions, but not in phase with global ice volume records. This discrepancy may be related to a distinct regional environmental response to larger-scale climatic drivers and local topographic influences on dust deposition patterns. Our findings confirm the potential of the LPS Remizovka to provide high-resolution paleoclimate data for the Late Pleistocene. The three-dimensional stratigraphic reconstruction reinforces the caution required to correctly interpret loess formation processes prior to their interpretation as paleoclimate archives, and provides guidelines for a more suitable approach.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdrakhmatov, K.E., Walker, R.T., Campbell, G.E., Carr, A.S., Elliott, A., Hillemann, C., Hollingsworth, J., et al., 2016. Multisegment rupture in the 11 July 1889 Chilik earthquake (M-w 8.0-8.3), Kazakh Tien Shan, interpreted from remote sensing, field survey, and paleoseismic trenching. Journal of Geophysical Research-Solid Earth 121, 46154640.CrossRefGoogle Scholar
Adamiec, G., Aitken, M., 1998. Dose-rate conversion factors: update. Ancient TL 16, 3750.Google Scholar
An, Z.S., Liu, T.S., Porter, S.C., Kukla, G.J., Wu, X.H., Hua, Y.M., 1990. The long-term paleomonsoon variation record by the loess-paleosol sequence in central China. Quaternary International 7/8, 9195.Google Scholar
Ankjærgaard, C., Guralnik, B., Buylaert, J.P., Reimann, T., Yi, S.W., Wallinga, J., 2016. Violet stimulated luminescence dating of quartz from Luochuan (Chinese loess plateau): agreement with independent chronology up to ∼600 ka. Quaternary Geochronology 34, 3346.Google Scholar
Antoine, P., Rousseau, D.D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H., Zöller, L., 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 29552973.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.D., Zöller, L., Lang, A., Munaut, A.V., Hatté, C., Fontugne, M., 2001. High-resolution record of the last Interglacial-glacial cycle in the Nussloch loess-palaeosol sequences, Upper Rhine Area, Germany. Quaternary International 76–7, 211229.CrossRefGoogle Scholar
Atrushkevitch, P.A., Kalabaev, N.B., Kartashov, A.P., Lototsky, V.D., Ostropico, P.A., 1988. Research on crustal movements on the Alma-Ata polygon, Northern Tien Shan. Journal of Geodynamics 9, 279292.Google Scholar
Auclair, M., Lamothe, M., Huot, S., 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37, 487492.CrossRefGoogle Scholar
Bertran, P., Liard, M., Sitzia, L., Tissoux, H., 2016. A map of Pleistocene aeolian deposits in Western Europe, with special emphasis on France. Journal of Quaternary Science 31, 844856.Google Scholar
Bronger, A., 1976. Zur quartären Klima- und Landschaftsentwicklung des Karpatenbeckens auf (paläo-)pedologischer und bodengeographischer Grundlage. Geographisches Institut, Universität Kiel, Kiel.Google Scholar
Bronger, A., 2003. Correlation of loess-paleosol sequences in East and Central Asia with SE Central Europe: towards a continental Quaternary pedostratigraphy and paleoclimatic history. Quaternary International 106, 1131.Google Scholar
Bronger, A., Winter, R., Heinkele, T., 1998a. Pleistocene climatic history of East and Central Asia based on paleopedological indicators in loess-paleosol sequences. Catena 34, 117.CrossRefGoogle Scholar
Bronger, A., Winter, R., Sedov, S., 1998b. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: towards a Quaternary paleoclimatic record in Central Asia. Catena 34, 1934.Google Scholar
Buggle, B., Hambach, U., Kehl, M., Marković, S.B., Zöller, L., Glaser, B., 2013. The progressive evolution of a continental climate in southeast-central European lowlands during the middle Pleistocene recorded in loess paleosol sequences. Geology 41, 771774.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Müller, K., Zöller, L., Marković, S.B., Glaser, B., 2014. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 117, 422.Google Scholar
Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012a. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.Google Scholar
Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012b. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.Google Scholar
Chen, Q., Liu, X.M., Heller, F., Hirt, A.M., Lu, B., Guo, X.L., Mao, X.G., et al., 2012. Susceptibility variations of multiple origins of loess from the Ily Basin (NW China). Chinese Science Bulletin 57, 18441855.CrossRefGoogle Scholar
de Lussy, F., Kubik, P., Greslou, D., Pascal, V., Gigord, P., Cantou, J.P., 2005. PLEIADES-HR image system products and quality-PLEIADES-HR image system products and geometric accuracy. Proceedings of the International Society for Photogrammetry and Remote Sensing Workshop, Hannover, Germany, 17–20 May.Google Scholar
Delvaux, D., Abdrakhmatov, K.E., Lemzin, I.N., Strom, A.L., 2001. Landslide and surface breaks of the 1911 M 8.2 Kemin Earthquake. Landslides 42, 15831592.Google Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Yu, Z.W., Xiong, S.F., Liu, T.S., 2002a. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography 17, 5-1–5-21.CrossRefGoogle Scholar
Ding, Z.L., Ranov, V., Yang, S.L., Finaev, A., Han, J.M., Wang, G.A., 2002b. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters 200, 387400.CrossRefGoogle Scholar
Dodonov, A., 1991. Loess of Central Asia. GeoJournal 24, 185194.CrossRefGoogle Scholar
Dodonov, A.E., Baiguzina, L.L., 1995. Loess stratigraphy of Central Asia: palaeoclimatic and palaeoenvironmental aspects. Quaternary Science Reviews 14, 707720.Google Scholar
Dodonov, A.E., Sadchikova, T.A., Sedov, S.N., Simakova, A.N., Zhou, L.P., 2006. Multidisciplinary approach for paleoenvironmental reconstruction in loess-paleosol studies of the Darai Kalon section, Southern Tajikistan. Quaternary International 152, 4858.Google Scholar
E, C.Y., Lai, Z.P., Sun, Y.J., Hou, S.S., Yu, L.P., Wu, C.Y., 2012. A luminescence dating study of loess deposits from the Yili River basin in western China. Quaternary Geochronology 10, 5055.Google Scholar
Feng, Z.D., Ran, M., Yang, Q.L., Zhai, X.W., Wang, W., Zhang, X.S., Huang, C.Q., 2011. Stratigraphies and chronologies of late Quaternary loess–paleosol sequences in the core area of the central Asian arid zone. Quaternary International 240, 156166.CrossRefGoogle Scholar
Fink, J., 1956. Zur Korrelation der Terrassen und Lösse in Österreich. Eiszeitalter und Gegenwart 7, 4977.Google Scholar
Fink, J., 1962. Studien zur absoluten und relativen Chronologie der fossilen Böden in Österreich. II. Wetzleinsdorf und Stillfried. Archaeologia Austriaca 31, 118.Google Scholar
Fink, J., 1976. Exkursion durch den österreichischen Teil des nördlichen Alpenvorlandes und den Donauraum zwischen Krems und der Wiener Pforte. ÖAW, Wien.Google Scholar
Fitzsimmons, K.E., 2017. Reconstructing palaeoenvironments on desert margins: new perspectives from Eurasian loess and Australian dry lake shorelines. Quaternary Science Reviews 171, 119.CrossRefGoogle Scholar
Fitzsimmons, K.E., Hambach, U., Veres, D., Iovita, R., 2013. The Campanian Ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLoS ONE 8, e65839. http://dx.doi.org/10.1371/journal.pone.0065839.CrossRefGoogle ScholarPubMed
Fitzsimmons, K.E., Marković, S.B., Hambach, U., 2012. Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin. Quaternary Science Reviews 41, 104118.CrossRefGoogle Scholar
Fitzsimmons, K.E., Sprafke, T., Zielhofer, C., Günter, C., Deom, J.-M., Sala, R., Iovita, R., in press. Loess accumulation in the Tian Shan piedmont: implications for palaeoenvironmental change in arid Central Asia. Quaternary International (in press).Google Scholar
Food and Agriculture Organization of the United Nations (FAO), 2006. Guidelines for Soil Description. 4th ed. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Frechen, M., Schweitzer, U., Zander, A., 1996. Improvements in sample preparation for the fine grain technique. Ancient TL 14, 1517.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part 1, Experimental design and statistical models. Archaeometry 41, 339364.Google Scholar
Jain, M., Buylaert, J.P., Thomsen, K.J., Murray, A.S., 2015. Further investigations on ‘non-fading’ in K-Feldspar. Quaternary International 362, 37.Google Scholar
Kang, S.G., Wang, X.L., Lu, Y.C., Liu, W.G., Song, Y.G., Wang, N., 2015. A high-resolution quartz OSL chronology of the Talede loess over the past similar to 30 ka and its implications for dust accumulation in the Ili Basin, Central Asia. Quaternary Geochronology 30, 181187.Google Scholar
Konert, M., Vandenberghe, J.E.F., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44, 523535.CrossRefGoogle Scholar
Koppes, M., Gillespie, A.R., Burke, R.M., Thompson, S.C., Stone, J., 2008. Late Quaternary glaciation in the Kyrgyz Tien Shan. Quaternary Science Reviews 27, 846866.CrossRefGoogle Scholar
Kukla, G.J., 1987. Loess Stratigraphy in Central China. Quaternary Science Reviews 6, 191219.CrossRefGoogle Scholar
Kukla, G.J., An, Z.S., Melice, J.L., Gavin, J., Xiao, J.L., 1990. Magnetic-Susceptibility Record of Chinese Loess. Transactions of the Royal Society of Edinburgh-Earth Sciences 81, 263288.Google Scholar
Landgraf, A., Dzhumabaeva, A., Abdrakhmatov, K.E., Strecker, M.R., Macaulay, E.A., Arrowsmith, J.R., Sudhaus, H., Preusser, F., Rugel, G., Merchel, S., 2016. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: the northern Tien Shan, Kyrgyzstan. Journal of Geophysical Research-Solid Earth 121, 38883910.CrossRefGoogle Scholar
Lauer, T., Vlaminck, S., Frechen, M., Rolf, C., Kehl, M., Sharifi, J., Lehndorff, E., Khormali, F., 2017. The Agh Band loess-palaeosol sequence – a terrestrial archive for climatic shifts during the last and penultimate glacial–interglacial cycles in a semiarid region in northern Iran. Quaternary International 429, 1330.Google Scholar
Lehmkuhl, F., Zens, J., Krauss, L., Schulte, P., Kels, H., 2016. Loess-paleosol sequences at the northern European loess belt in Germany: distribution, geomorphology and stratigraphy. Quaternary Science Reviews 153, 1130.CrossRefGoogle Scholar
Li, G.Q., Rao, Z.G., Duan, Y.W., Xia, D.S., Wang, L.B., Madsen, D.B., Jia, J., et al., 2016a. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid central Asia, since the Penultimate Glaciation. Earth and Planetary Science Letters 448, 112.Google Scholar
Li, Y., Song, Y.G., Lai, Z.P., Han, L., An, Z.S., 2016b. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis. Scientific Reports 6, 32365. http://dx.doi.org/10.1038/srep32365.CrossRefGoogle ScholarPubMed
Li, Y., Song, Y.G., Yan, L.B., Chen, T., An, Z.S., 2015. Timing and Spatial Distribution of Loess in Xinjiang, NW China. PLoS ONE, 10. http://dx.doi.org/10.1371/journal.pone.0125492.Google Scholar
Liu, T.S., 1988. Loess in China. 2nd ed. Springer-Verlag, Berlin.Google Scholar
Machalett, B., Frechen, M., Hambach, U., Oches, E.A., Zöller, L., Marković, S.B., 2006. The loess sequence from Remisowka (northern boundary of the Tien Shan Mountains, Kazakhstan) - Part I: Luminescence dating. Quaternary International 152–153, 192201.Google Scholar
Machalett, B., Oches, E.A., Frechen, M., Zöller, L., Hambach, U., Mavlyanova, N.G., Marković, S.B., Endlicher, W., 2008. Aeolian dust dynamics in central Asia during the Pleistocene: driven by the long-term migration, seasonality, and permanency of the Asiatic polar front. Geochemistry Geophysics Geosystems 9, 122.Google Scholar
Makeev, A.O., 2009. Pedogenic alteration of aeolian sediments in the upper loess mantles of the Russian Plain. Quaternary International 209, 7994.Google Scholar
Marković, S.B., Fitzsimmons, K.E., Sprafke, T., Gavrilovic, D., Smalley, I.J., Jovic, V., Svircev, Z., Gavrilov, M.B., Beslin, M., 2016. The history of Danube loess research. Quaternary International 399, 8699.Google Scholar
Marković, S.B., Hambach, U., Stevens, T., Kukla, G.J., Heller, F., Mccoy, W.D., Oches, E.A., Buggle, B., Zöller, L., 2011. The last million years recorded at the Stari Slankamen (Northern Serbia) loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews 30, 11421154.Google Scholar
Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P.L., Buggle, B., et al., 2015. Danube loess stratigraphy — towards a pan-European loess stratigraphic model. Earth-Science Reviews 148, 228258.Google Scholar
Mason, J.A., Joeckel, R.M., Bettis, E.A. III, 2007. Middle to Late Pleistocene loess record in eastern Nebraska, USA, and implications for the unique nature of Oxygen Isotope Stage 2. Quaternary Science Reviews 26, 773792.Google Scholar
Narama, C., Kaab, A., Duishonakunov, M., Abdrakhmatov, K., 2010. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (similar to 1970), Landsat (similar to 2000), and ALOS (similar to 2007) satellite data. Global and Planetary Change 71, 4254.Google Scholar
Nigmatova, S., 2009. First results of palynological researches of Late Pleistocene and Holocene Loess Kazhakstan (North Tian-Shan). NSF Collaborative research: bioclimatic reconstruction of the past 50,000 years from eolian sequences in westerlies-dominated Central Asia, 2006–2008. Unpublished project report, Louisiana State University.Google Scholar
Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen. Quaternary Science Reviews 88, 1454.Google Scholar
Porter, S.C., 2013. Loess Records - China. In Elias, S.A., Mock, C.J. (Eds.), Encyclopedia of Quaternary Science. 2nd ed. Elsevier, Amsterdam, pp. 595605.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long term variations. Radiation Measurements 23, 497500.Google Scholar
Ran, M., Feng, Z.D., 2014. Variation in carbon isotopic composition over the past ca. 46,000 yr in the loess–paleosol sequence in central Kazakhstan and paleoclimatic significance. Organic Geochemistry 73, 4755.Google Scholar
Rees-Jones, J., Tite, M.S., 1997. Optical dating results for British archaeological sediments. Archaeometry 36, 177187.CrossRefGoogle Scholar
Roberts, H.M., 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and future. Boreas 37, 483507.CrossRefGoogle Scholar
Rousseau, D.D., Antoine, P., Kunesch, S., Hatté, C., Rossignol, J., Packman, S., Lang, A., Gauthier, C., 2007. Evidence of cyclic dust deposition in the US Great plains during the last deglaciation from the high-resolution analysis of the Peoria Loess in the Eustis sequence (Nebraska, USA). iarth and Planetary Science Letters 262, 159174.Google Scholar
Ruhe, R.V., Daniels, R.B., Cady, J.G., 1967. Landscape Evolution and Soil Formation in Southwestern Iowa. U.S. Department of Agriculture, Washington, DC.Google Scholar
Schaetzl, R.J., Larson, P.H., Faulkner, D.J., Running, G.L., Jol, H.M., Rittenour, T.M., in pressEolian Sand and Loess Deposits Indicate West-Northwest Paleowinds During the Late Pleistocene in Western Wisconsin, USA. Quaternary Research (In Press).Google Scholar
Schirmer, W., 2012. Rhine loess at Schwalbenberg II - MIS 4 and 3. E & G Quaternary Science Journal 61, 3247.Google Scholar
Schulte, P., Sprafke, T., Rodrigues, L., Fitzsimmons, K.E., in press. Are fixed grain size ratios useful proxies for loess sedimentation dynamics? Experiences from Remizovka, Kazakhstan. Aeolian Research (In Press).Google Scholar
Sedov, S., Sycheva, S., Pi, T., Díaz, J., 2013. Last Interglacial paleosols with Argic horizons in Upper Austria and Central Russia: pedogenetic and paleoenvironmental inferences from comparison with the Holocene analogues. E&G Quaternary Science Journal 62, 4458.Google Scholar
Selander, J., Oskin, M., Ormukov, C., Abdrakhmatov, K., 2012. Inherited strike‐slip faults as an origin for basement‐cored uplifts: example of the Kungey and Zailiskey ranges, northern Tian Shan. Tectonics, 31. http//dx.doi.org/ 10.1029/2011TC003002.Google Scholar
Smalley, I.J., Krinsley, D.H., 1978. Loess deposits associated with deserts. Catena 5, 5366.Google Scholar
Smalley, I.J., Mavlyanova, N.G., Rakhmatullaev, K.L., Shermatov, M.S., Machalett, B., Dhand, K.O., Jefferson, I.F., 2006. The formation of loess deposits in the Tashkent region and parts of Central Asia; and problems with irrigation, hydrocollapse and soil erosion. Quaternary International 152, 5969.Google Scholar
Song, Y.G., Chen, X.L., Qian, L.B., Li, C.X., Li, Y., Li, X.X., Chang, H., An, Z.S., 2014. Distribution and composition of loess sediments in the Ili Basin, Central Asia. Quaternary International 334, 6173.Google Scholar
Song, Y.G., Lai, Z.P., Li, Y., Chen, T., Wang, Y.X., 2015. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia. Quaternary Geochronology 30, 405410.Google Scholar
Song, Y.G., Li, C.X., Zhao, J.D., Cheng, P., Zeng, M.X., 2012. A combined luminescence and radiocarbon dating study of the Ili loess, Central Asia. Quaternary Geochronology 10, 27.Google Scholar
Sprafke, T., 2016. Löss in Niederösterreich - Archiv quartärer Klima- und Landschaftsveränderungen. Würzburg University Press, Würzburg.Google Scholar
Sprafke, T., Obreht, I., 2016. Loess: rock, sediment or soil - what is missing for its definition? Quaternary International 399: 198207.Google Scholar
Sprafke, T., Thiel, C., Terhorst, B., 2014. From micromorphology to palaeoenvironment: the MIS 10 to MIS 5 record in Paudorf (Lower Austria). Catena 117, 6072.Google Scholar
Stevens, T., Thomas, D.S.G., Armitage, S.J., Lunn, H.R., Lu, H.Y., 2007. Reinterpreting climate proxy records from late Quaternary Chinese loess: a detailed OSL investigation. Earth-Science Reviews 80, 111136.Google Scholar
Sun, Y.B., An, Z.S., Clemens, S.C., Bloemendal, J., Vandenberghe, J., 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters 297, 525535.Google Scholar
Tatevossian, R.E., 2007. The Verny, 1887, earthquake in Central Asia: application of the INQUA scale, based on coseismic environmental effects. Quaternary International 173–174: 2329.Google Scholar
Thiel, C., Buylaert, J.P., Murray, A.S., Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M., 2011. Luminescence dating of the Stratzing loess profile (Austria) - testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234, 2331.Google Scholar
Thiel, C., Horváth, E., Frechen, M., 2014. Revisiting the loess/palaeosol sequence in Paks, Hungary: a post-IR IRSL based chronology for the ‘Young Loess Series’. Quaternary International 319, 8898.CrossRefGoogle Scholar
Vandenberghe, J., Markovič, S.B., Jovanovič, M., Hambach, U., 2014. Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia). Quaternary International 334–335, 8693.Google Scholar
Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H.Y., Dodonov, A., Buylaert, J.-P., 2006. Penetration of Atlantic westerly winds into Central and East Asia. Quaternary Science Reviews 25, 23802389.Google Scholar
Vasiljević, D.A., Marković, S.B., Hose, T.A., Ding, Z.L., Guo, Z.T., Liu, X.M., Smalley, I.J., Lukić, T., Vujičić, M.D., 2014. Loess–palaeosol sequences in China and Europe: common values and geoconservation issues. Catena 117, 108118.Google Scholar
Velichko, A.A., 1990. Loess-paleosol formation on the Russian Plain. Quaternary International 7–8, 103114.Google Scholar
Vlaminck, S., Kehl, M., Lauer, T., Shahriari, A., Sharifi, J., Eckmeier, E., Lehndorff, E., Khormali, F., Frechen, M., 2016. Loess-soil sequence at Toshan (Northern Iran): insights into late Pleistocene climate change. Quaternary International 399, 122135.Google Scholar
Vogel, J.C., Zagwijn, W.H., 1967. Groningen radiocarbon dates VI. Radiocarbon 9, 63106.Google Scholar
Weather and Climate. 2017. Climate Almaty (accessed April 07 2017). [In Russian]. http://www.pogodaiklimat.ru/climate/36870.htm.Google Scholar
Youn, J.H., Seong, Y.B., Choi, J.H., Abdrakhmatov, K., Ormukov, C., 2014. Loess deposits in the northern Kyrgyz Tien Shan: implications for the paleoclimate reconstruction during the Late Quaternary. Catena 117, 8193.Google Scholar
Zech, R., Zech, M., Marković, S., Hambach, U., Huang, Y.S., 2013. Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess–paleosol sequence Crvenka, Northern Serbia. Palaeogeography, Palaeoclimatology, Palaeoecology 387, 165175.Google Scholar
Supplementary material: File

Sprafke et al. supplementary material

Sprafke et al. supplementary material 1

Download Sprafke et al. supplementary material(File)
File 222.8 KB
Supplementary material: File

Sprafke et al. supplementary material

Sprafke et al. supplementary material 2

Download Sprafke et al. supplementary material(File)
File 82.4 KB
Supplementary material: File

Sprafke et al. supplementary material

Sprafke et al. supplementary material 3

Download Sprafke et al. supplementary material(File)
File 4.8 KB