Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T13:22:49.923Z Has data issue: false hasContentIssue false

Structure and properties of paleosols of the last two interglacial cycles of the Khovaling Loess Plateau, Tajikistan (Obi–Mazar section)

Published online by Cambridge University Press:  13 January 2025

Olga A. Tokareva*
Affiliation:
Institute of Geography RAS, Moscow, Russia Institute of Archeology and Ethnography SB RAS, Novosibirsk, Russia Gorgan University of Agricultural Sciences and Natural Resources, Iran
Marina P. Lebedeva
Affiliation:
V.V. Dokuchaev Soil Science Institute RAS, Moscow, Russia
Peter M. Sosin
Affiliation:
Institute of Water Problems, Hydropower and Ecology NAST, Dushanbe, Tajikistan
Islomov K. Ashurmadov
Affiliation:
Institute of History, Archeology and Ethnography of NAST, Dushanbe, Tajikistan
Farhad Khormali
Affiliation:
Gorgan University of Agricultural Sciences and Natural Resources, Iran
Redzhep N. Kurbanov
Affiliation:
Institute of Geography RAS, Moscow, Russia Institute of Archeology and Ethnography SB RAS, Novosibirsk, Russia Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
*
Corresponding author: Olga A. Tokareva; Email: gidroliss@gmail.com.

Abstract

Significant thicknesses, a large number of paleosols, and an impressive chronological framework place the loess–paleosol series of the Afghan-Tajik depression on a par with the famous sections of the Chinese Loess Plateau. Based on the results of field stratigraphy, description of the macro- and micromorphological structure, field magnetic susceptibility measurements, and study of the chemical and grain-size compositions, a comprehensive characterization of the structure, properties, and formation conditions of paleosol horizons and loess layers was carried out. Three loess units and two pedocomplexes are distinguished in the late and upper middle Pleistocene deposits of the Obi-Mazar section. These sediments are characterized by high silt and carbonate content and the presence of loess with pedogenic features. Pedocomplex PC1, consisting of three paleosols, according to the stratigraphic position and absolute dating, corresponds to MIS 5. Pedocomplex PC2, consisting of two developed paleosols separated by loess, is correlated with MIS 7. The properties of the studied paleosols together with modern soil distribution in the region allow for the reconstruction of the soil type of PC1 and PC2 of the Obi-Mazar section with the genesis of the Calcisols–Kastanozems groups.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseeva, L.I., Bayguzina, L.L., Belsky, V.A., Vangengeim, E.A., Vislobokova, I.A., Gamov, L.N., Dmitrieva, E.L., et al., 1977. Excursion guide: International Symposium on the Problem “Boundary of the Neogene and Quaternary System”. Nauka, Moscow, 183 p. [in Russian]Google Scholar
An, Z. (Ed.), 2014. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon–Arid Environment Evolution. Springer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Badía-Villas, D., del Moral, F., 2016. Soils of the arid areas. In: Gallardo, J.F. (Ed.), The Soils of Spain. Springer, Cham, Switzerland, pp. 145161.CrossRefGoogle Scholar
Becze-Deàk, J., Langohr, R., Verrecchia, E.P., 1997. Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction. Geoderma 76, 221252.CrossRefGoogle Scholar
Bindschedler, S., Cailleau, G., Verrecchia, E., 2016. Role of fungi in the biomineralization of calcite. Minerals 6, 41. https://doi.org/10.3390/min6020041.CrossRefGoogle Scholar
Bindschedler, S., Milliere, L., Cailleau, G., Job, D., Verrecchia, E.P., 2012. An ultrastructural approach to analogies between fungal structures and needle fiber calcite. Geomicrobiology Journal 29, 301313.CrossRefGoogle Scholar
Bronger, A., Bruhn-Lobin, N., Heinkele, T., 1993. Micromorphology of paleosols-genetic and paleoenvironmental deductions: case studies from central China, south India, NW Morocco and the Great Plains of the USA. In: Ringrose-Voase, A.J., Humphreys, G.S. (Eds.), Soil Micromorphology: Studies in Management and Genesis. Developments in Soil Science, Volume 22. Elsevier, Amsterdam, pp. 187206.CrossRefGoogle Scholar
Bronger, A., Kalk, E., Schroeder, D., 1976. Über glimmer-und feldspatverwitterung sowie entstehung und umwandlung von tonmineralen in rezenten und fossilen Lössböden. Geoderma 16, 2154.CrossRefGoogle Scholar
Bronger, A., Smolíková, L., 2019. Quaternary loess–paleosol sequences in East and Central Asia in comparison with Central Europe—micromorphological and paleoclimatological conclusions. Boletín de la Sociedad Geológica Mexicana 71, 6592.CrossRefGoogle Scholar
Bronger, A., Winter, R., Derevjanko, O., Aldag, S., 1995. Loess–palaeosol sequences in Tajikistan as a palaeoclimatic record of the Quaternary in Central Asia. Quaternary Proceedings 4, 6981.Google Scholar
Bronger, A., Winter, R., Heinkele, T., 1998a. Pleistocene climatic history of East and Central Asia based on paleopedological indicators in loess–paleosol sequences. Catena 34, 117.CrossRefGoogle Scholar
Bronger, A., Winter, R., Sedov, S., 1998b. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tajikistan: towards a Quaternary paleoclimatic record in Central Asia. Catena 34, 1934.CrossRefGoogle Scholar
Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., Tursina, T., 1985. Handbook for Soil Thin Section Description. Waine Research, Wolverhampton, UK, 152 pp.Google Scholar
Costantini, E.A., Barbetti, R., Fantappie, M., L'Abate, G., Lorenzetti, R., Magini, S., 2013. Pedodiversity. In: The soils of Italy. Springer, Dordrecht, Germany, pp. 105178.CrossRefGoogle Scholar
Dan, J., Gerson, R., Koyumdjisky, H., Yaalon, D.H. (Eds.), 1981. Aridic Soils of Israel: Properties, Genesis and Management. Agricultural Research Organization, Institute of Soils and Water, Special Publication 190. Division of Scientific Publications, The Volcani Center, Bet Dagan, Israel, 190 pp.Google Scholar
Ding, F., Ding, Z., 2003. Chemical weathering history of the southern Tajikistan loess and paleoclimate implications. Science in China Series D: Earth Sciences 46, 10121021.Google Scholar
Ding, Z.L., Ranov, V., Yang, S.L., Finaev, A., Han, J.M., Wang, G.A., 2002. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters 200, 387400.CrossRefGoogle Scholar
Dodonov, A.E., 2002. Quaternary Period of Central Asia: Stratigraphy, Correlation, Paleogeography. GEOS, Moscow, 254 pp. [in Russian]Google Scholar
Dodonov, A.E., Baiguzina, L.L., 1995. Loess stratigraphy of Central Asia: palaeoclimatic and palaeoenvironmental aspects. Quaternary Science Reviews 14, 707720.CrossRefGoogle Scholar
Dodonov, A.E., Lomov, S.P., 1985. Stratigraphy and pedogenesis of loess formation of southern Tajikistan. In: Agrawal, D.P., Kusumgar, S., Krishnamurthy, R.V. (Eds.), Proceedings of the Workshop on the Late Cenozoic Palaeoclimatic Changes in Kashmir and Central Asia, Ahmedabad, 19–23 October 1982. Today & Tomorrow's Printers and Publishers, New Delhi, pp. 223225.Google Scholar
Dodonov, A.E., Pen'kov, A.V., 1977. Some data on the stratigraphy of the watershed loesses in the Tajik depression. Bulletin of the Commission on the Quaternary Research 47, 6776.Google Scholar
Dodonov, A.E., Sadchikova, T.A., Sedov, S.N., Simakova, A.N., Zhou, L.P., 2006. Multidisciplinary approach for paleoenvironmental reconstruction in loess–paleosol studies of the Darai Kalon section, Southern Tajikistan. Quaternary International 152, 4858.CrossRefGoogle Scholar
Dodonov, A.E., Shackleton, N., Zhou, L.P., Lomov, S.P., Finaev, A.F., 1999. Loess–soil stratigraphy of the Quaternary of Central Asia: geochronology, correlation and evolution of the paleoenvironment. Stratigraphy and Geological Correlation 7, 6680. [in Russian]Google Scholar
Durand, N., Monger, H.C, Canti, M.G., Verrecchia, E.P., 2018. Calcium carbonate features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths, second ed. Elsevier Science Bv, Amsterdam, Netherlands, pp. 205258.CrossRefGoogle Scholar
Egorov, V.V., Fridland, V.M., Ivanova, E.N., Rozov, N.N., Nosin, V.A., Friev, T.A. (Eds.), 1987. Classification and Diagnostics of Soils of the USSR. CRC Press, Boca Raton, Florida, 341 pp. [in Russian]Google Scholar
Fan, Y., Jia, J., Liu, Y., Zhao, L., Liu, X., Gao, F., Xia, D., 2022. Millennial-scale climate oscillations over the last two climatic cycles revealed by a loess–paleosol sequence from central Asia. Journal of Asian Earth Sciences 240, 105435. https://doi.org/10.1016/j.jseaes.2022.105435.CrossRefGoogle Scholar
Feng, Z.D., Wang, H.B., 2006. Geographic variations in particle size distribution of the last interglacial pedocomplex S1 across the Chinese Loess Plateau: their chronological and pedogenic implications. Catena 65, 315328.CrossRefGoogle Scholar
Folk, R.L., 1974. The natural history of crystalline calcium carbonate; effect of magnesium content and salinity. Journal of Sedimentary Research 44, 4053.Google Scholar
Frechen, М., Boergnik, W., 1997. Lobstratigraphie in Tadschikistan das Profil Darai Kalon. Sonderveröffentlichungen des Geologischen Instituts der Universität zu Köln 114, 159181.Google Scholar
Frechen, M., Dodonov, A.E., 1998. Loess chronology of the middle and upper Pleistocene in Tajikistan. Geologische Rundschau 87, 220.CrossRefGoogle Scholar
Gerasimov, I.P., Glazovskaya, M.A., 1960. Fundamentals of Soil Science and Soil Geography. State Department Geographical Literature, Moscow, 490 pp. [in Russian]Google Scholar
Guo, Z., Fedoroff, N., Tung Sheng, L., 1993. Paleosols as evidence of difference of climates between Holocene and the Last Interglacial. Quaternary Sciences 13, 4155. [in Chinese with English abstract]Google Scholar
Häggi, C., Eglinton, T.I., Zech, W., Sosin, P., Zech, R., 2019. A 250 ka leaf-wax δD record from a loess section in Darai Kalon, southern Tajikistan. Quaternary Science Reviews 208, 118128.CrossRefGoogle Scholar
Hay, R.L., Wiggins, B., 1991. Pellets, ooids, sepiolite and silica in three calcretes of the southwestern United States. In: Wright, V.P., Tucker, M.E. (Eds.), Calcretes: An Introduction. International Association of Sedimentologists Reprint Series 2, 5168.CrossRefGoogle Scholar
Herrero, J., Porta, J., Fedoroff, N., 1992. Hypergypsic soil micromorphology and landscape relationships in Northeastern Spain. Soil Science Society of America Journal 56, 11881194.CrossRefGoogle Scholar
Hseu, Z.Y., Chen, Z.S., 1999. Micromorphology of redoximorphic features of subtropical anthraquic Ultisols. Food Science and Agricultural Chemistry 1, 194202.Google Scholar
Imbellone, P.A., 2011. Classification of paleosols. Geociências 30, 513.Google Scholar
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria. https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdfGoogle Scholar
Jaillard, B., 1987. Les structures rhizomorphes calcaires: modèle de réorganisation des minéraux du sol par les racines. D.Sc. dissertation, Université Montpellier 2, Montpellier, France. [in French]Google Scholar
Kemp, R.A., 1995. Distribution and genesis of calcitic pedofeatures within a rapidly aggrading loess–paleosol sequence in China. Geoderma 65, 303316.CrossRefGoogle Scholar
Khormali, F., Abtahi, A., 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals 38, 511527.CrossRefGoogle Scholar
Khormali, F., Abtahi, A., Stoops, G., 2006. Micromorphology of calcitic features in highly calcareous soils of Fars Province, southern Iran. Geoderma 132, 3146.CrossRefGoogle Scholar
Khormali, F., Kehl, M., 2011. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in northern Iran. Quaternary International 234, 109123.CrossRefGoogle Scholar
Khormali, F., Valizadeh, S., Talebi, F., Tokareva, O., Schnider, R., Tazikeh, H., Sosin, P., Kurbanov, R., Buylaert, J.-P., Murray, A., 2024. Loess derived soils evolution in Tajikistan, implications for paleoclimate reconstruction. 3rd International IRQUA Conference on Quaternary Sciences (January 29–February 1, 2024), Tehran, Iran, pp. 48–49.Google Scholar
Khudzhageldiev, T.U., 2007. Stone industry from pedocomplex 6b of the Obimazar section (southern Tajikistan) according to excavations in 1997 y. Archaeological work in Tajikistan, Academy of Sciences of the Republic of Tajikistan 31, 169197. [in Russian]Google Scholar
Klappa, C.F., 1991. Biolithogenesis of microcodium: elucidation. In: Wright, V.P., Tucker, M.E. (Eds.), Calcretes: An Introduction. International Association of Sedimentologists Reprint Series 2, 115–148.CrossRefGoogle Scholar
Konert, M., Vandenberghe, J.E.F., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44, 523535.CrossRefGoogle Scholar
Kooistra, M.J., Pulleman, M.M., 2018. Features related to faunal activity. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 447469.CrossRefGoogle Scholar
Kovda, I.V., 2008. Information value of carbonate formations for the reconstruction of processes and soil formation factors. In: Targulian, V.О., Goryachkin, S.V. (Eds.), Soil Memory: Soil as a Memory of Biosphere–Geosphere–Anthroposphere Interactions. LKI Publishers, Moscow, pp. 352397. [in Russian]Google Scholar
Kurbanov, R.N., Anoykin, A.A., Filimonova, T.G., Karaev, A.Ch., Meshcheryakova, O.A., Kulakova, E.P., Filatov, E.A., Chistyakov, P.V., Sharipov, A.F., 2022. Geoarchaeological research at the Honako III site in South Tajikistan in 2022. Problems of Archeology, Ethnography, Anthropology of Siberia and Adjacent Territories 28, 157163. [in Russian]Google Scholar
Kyuma, K., 2004. Paddy Soil Science. Kyoto University Press and Trans Pacific Press, Melbourne, 280 pp.Google Scholar
Lazarenko, A.A., 1977. Lithology of loess and buried soils. In: Dodonov, A.E., Melamed, Y.R., Nikiforova, K.V. (Eds.), International Symposium on the Neogene–Quaternary Boundary. Excursions Guide-book. Scientific Editions, Moscow, pp. 122124.Google Scholar
Lazarenko, A.A., Pakhomov, M.M., Pen'kov, A.V., Shelkoplyas, V.N., Giterman, R.E., Minina, E.A., Ranov, V.A., 1977. On the possibility of climatostratigraphic subdivision of the loess formation of Central Asia. Pozdnii kainozoi Severnoi Evrazii (Late Cenozoic of Northern Eurasia). GIN AN SSSR, Moscow, pp. 70–133. [in Russian]Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071.Google Scholar
Li, Y., Song, Y., Kaskaoutis, D.G., Zan, J., Orozbaev, R., Tan, L., Chen, X., 2021. Aeolian dust dynamics in the Fergana Valley, Central Asia, since ~30 ka inferred from loess deposits. Geoscience Frontiers 12, 101180. https://doi.org/10.1016/j.gsf.2021.101180.CrossRefGoogle Scholar
Lomov, S.P., 1980. Fossil soils in forests and some features of their diagnosis in Tajikistan. In: Dodonov, A.E. (Ed.), The Boundary of the Neogene and Quaternary System. Moscow, pp. 98102.Google Scholar
Lomov, S.P., Ranov, V.A., 1985. The peculiarities of the Pleistocene palaeosol formations and distribution of embedded Palaeolithic tools. In: Agrawal, D.P., Kusumgar, S., Krishnamurthy, R.V. (Eds.), Climate and Geology of Kashmir, the Last 4 Million Years : Proceedings of the International Workshop on the Late Cenozoic Palaeoclimatic Changes in Kashmir and Central Asia, Ahmedabad, 19–23 October 1982. Today & Tomorrow's Printers and Publishers, New Delhi, pp. 227240.Google Scholar
Lomov, S.P., Sosin, P.M., 1976. Soils of the Paleolithic camp site Karatau I in southern Tadzhikistan. Izvestiya Akademii Nauk Tajikskoy SSR, pp. 93–99. [in Russian]Google Scholar
Lomov, S.P., Sosin, P.S., Sosnovskaya, V.P., 1982. Structure and material composition of buried soils in Tajikistan. Eurasian Soil Science 1, 1830. [in Russian]Google Scholar
Lomov, S.P., Tursina, T.V., Zhou, L.P., 1996. Magnetic susceptibility of soils: micromorphology and possible reconstructions of climate. Soil Micromorphology. Studies in Soil Diversity, Diagnostics, Dynamics, 10th International Working Meeting on Soil Micromorphology (Moscow, Russia, July 8–13), p. 145.Google Scholar
Mestdagh, H., Haesaerts, P., Dodonov, A., Hus, J., 1999. Pedosedimentary and climatic reconstruction of the last interglacial and early glacial loess–paleosol sequence in South Tadzhikistan. Catena 35, 197218.CrossRefGoogle Scholar
Munsell Color, 2000. Munsell Soil Color Charts. Munsell Color, Grand Rapids, MI.Google Scholar
Nestroy, O., 2001. Classification of Chernozems, Phaeozems and Calcisols in Austria according to the World Reference Base for Soil Resources (WRB). European Soil Bureau—Research Report 7, 121124.Google Scholar
Nettleton, W.D., Flach, K.W., Brasher, B.R., 1969. Argillic horizons without clay skins. Soil Science Society of America Journal 33, 121125.CrossRefGoogle Scholar
Nettleton, W.D., Olson, C.G., Wysocki, D.A., 2000. Paleosol classification: problems and solutions. Catena 41, 6192.CrossRefGoogle Scholar
Özden, M.O., Keskin, S., Dinç, U., Kapur, S., Akça, E., Şenol, S., Dinç, O., 2001. Soil Geographical Database of Turkey at a Scale 1:1.000.000 4th Approximation. Köy Hizmetleri Genel Müdürlüğü, APK Dairesi Başkanlığı, Ankara.Google Scholar
Özer, M., Orhan, M., Işik, N.S., 2010. Effect of particle optical properties on size distribution of soils obtained by laser diffraction. Environmental & Engineering Geoscience 16, 163173.CrossRefGoogle Scholar
Pabst, W., Kuneš, K., Havrda, J., Gregorová, E., 2000. A note on particle size analyses of kaolins and clays. Journal of the European Ceramic Society 20, 14291437.CrossRefGoogle Scholar
Pakhomov, M.M., 1991. Correlation of Pleistocene events in Central Asia and the dynamics of mountain zonality. Izvestiya Akademii Nauk SSSR. Geographic Series 6, 94103. [in Russian]Google Scholar
Parviz, N., Shen, Z., Yunus, M., Zulqarnain, S., 2020. Loess deposits in southern Tajikistan (Central Asia): magnetic properties and paleoclimate. Quaternary Geochronology 60, 101114. https://doi.org/10.1016/j.quageo.2020.101114.CrossRefGoogle Scholar
Polyakov, A.N., 1989. Micromorphological studies of calcite in chernozems of the European part of the USSR. Soil Science 2, 7986. [in Russian]Google Scholar
Pospelova, G.A., Laukhin, S.A., Ranov, V.A., Vlasov, V.K., Volgina, V.A., Kulikov, O.A., Pilipenko, O.V., Sharonova, Z.V., 2005. New data on the chronostratigraphy of the upper regional buried soil of the loess section of Khonako-3, Tajikistan (archaeological, paleomagnetic and magnetic evidence). Archaeology, Ethnography and Anthropology of Eurasia 21, 21–29(21), 21. [in Russian]Google Scholar
Pospíšilová, Ľ., Uhlík, P., Menšík, L., Hlisnikovský, L., Eichmeier, A., Horáková, E., Vlček, V., 2020. Clay mineralogical composition and chemical properties of Haplic Luvisol developed on loess in the protected landscape area Litovelské Pomoraví. European Journal of Soil Science 72, 11281142.CrossRefGoogle Scholar
Railsback, L.B., Brook, G.A., Ellwood, B.B., Liang, F., Cheng, H., Edwards, R.L., 2015a. A record of wet glacial stages and dry interglacial stages over the last 560 kyr from a standing massive stalagmite in Carlsbad Cavern, New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 438, 256266.CrossRefGoogle Scholar
Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015b. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94106.CrossRefGoogle Scholar
Ranov, V., 1995. The ‘loessic Palaeolithic’ in south Tadjikistan, central Asia: its industries, chronology and correlation. Quaternary Science Reviews 14, 731745.CrossRefGoogle Scholar
Ranov, V.A., Schäfer, J., 2000. Loess Paleolithic. Archeology, Ethnography and Anthropology of Eurasia 2, 2032. [in Russian]Google Scholar
Retallack, G.J., Wright, V.P., 1990. Micromorphology of lithified paleosols. Developments in Soil Science. 19, 641652.CrossRefGoogle Scholar
Rousseau, D.D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Othman, D.B., et al., 2002. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation. Quaternary Science Reviews 21, 15771582.CrossRefGoogle Scholar
Schäfer, J., Ranov, V.A., Sosin, P.M., 1998. The “cultural evolution” of man and the chronostratigraphical background of changing environments in the loess palaeosoil sequences of Obi-Mazar and Khonako (Tadjikistan). Anthropologie 36, 121135.Google Scholar
Schäfer, J., Sosin, P.M., 2013. Am Fuße des Pamir—Archäologie in der Steilwand. Archäologie in Deutschland 2, 1216. [in German]Google Scholar
Schäfer, J., Sosin, P.M., Ranov, V.A., 1996. Neue Untersuchungen zum Loesspalaeolithikum am Obi-Mazar, Tádžikistán. Archäologisches Korrespondenzblatt 26, 97109. [in German]Google Scholar
Scheffer, F., Schachtschabel, P., 2004. Lehrbuch der Bodenkunde, 13th Edition. Enke, F., Frankfurt, Germany. [in German]Google Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C. (Eds.), 2012. Field Book for Describing and Sampling Soils. Government Printing Office, Washington, DC, 300 pp.Google Scholar
Scientific and Applied Handbook on the Climate of the USSR, 1988. Series 3. Long-term data. Part 1–6 (31). Tajik SSR, 398. [in Russian]Google Scholar
Shackleton, N.J., An, Z., Dodonov, А.Е., Gavin, G., Kukla, G.J., Ranov, V.A., Zhou, L.P., 1995. Accumulation rate of loess in Tajikistan and China: relationship with global ice volume cycles. Quaternary Proceedings 4, 16.Google Scholar
Siesser, W.G., 1973. Diagenetically formed ooids and intraclasts in South African calcretes. Sedimentology 20, 539551.CrossRefGoogle Scholar
Soil Survey Staff, 2022. Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf.Google Scholar
Song, Y., Hao, Q., Ge, J., Zhao, D., Zhang, Y., Li, Q., Zuo, X., , Y, Wang, P., 2014. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quaternary International 334, 119131.CrossRefGoogle Scholar
Spaargaren, O.C. (Ed.), 1994. World Reference Base for Soil Resources. Draft. Wageningen, Rome, 161 pp.Google Scholar
Stolt, M.H., Ogg, C.M., Baker, J.C., 1994. Strongly contrasting redoximorphic patterns in Virginia Valley and Ridge paleosols. Soil Science Society of America Journal 58, 477484.CrossRefGoogle Scholar
Stoops, G., 2021. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. John Wiley Sons, Hoboken, New Jersey.Google Scholar
Sun, D., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su, R., Liu, T., 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55, 325340.CrossRefGoogle Scholar
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z., Su, R., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152, 263277.CrossRefGoogle Scholar
Sun, Y., An, Z., Clemens, S.C., Bloemendal, J., Vandenberghe, J., 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters 297, 525535.CrossRefGoogle Scholar
Sun, Y., Lu, H., An, Z., 2006. Grain size of loess, palaeosol and red clay deposits on the Chinese Loess Plateau: significance for understanding pedogenic alteration and palaeomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 129138.CrossRefGoogle Scholar
Tobiašová, E., Dębska, B., Banach-Szott, M., 2013. Stability of organic mater of Haplic Chernozem and Haplic Luvisol of different ecosystems. Journal of Central European Agriculture 14, 15411549.CrossRefGoogle Scholar
Valiakhmedov, V., 1977. Pupae chambers of soil-dwelling invertebrates in the gray soils of Tajikistan and their influence on the formation of the soil profile. Eurasian Soil Science 4, 8591. [in Russian]Google Scholar
Vandenberghe, J., 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Science Reviews 121, 1830.CrossRefGoogle Scholar
Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H., Dodonov, A., Buylaert, J.-P., 2006. Penetration of Atlantic westerly winds into Central and East Asia. Quaternary Science Reviews 25, 23802389.CrossRefGoogle Scholar
Vandenberghe, J., Zhisheng, A., Nugteren, G., Huayu, L., Van Huissteden, K., 1997. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25, 3538.2.3.CO;2>CrossRefGoogle Scholar
Varga, G., Újvári, G., Kovács, J., 2019. Interpretation of sedimentary (sub) populations extracted from grain size distributions of Central European loess–paleosol series. Quaternary International 502, 6070.CrossRefGoogle Scholar
Veklich, M.F., 1979. Pleistocene loesses and fossil soils of the Ukraine. Acta Geologica Scientiarum Hungaricae 22, 3562.Google Scholar
Velichko, A.A., Borisova, O.K., Zakharov, A.L., 2017. Change of landscape conditions in the south of the Russian Plain in the late Pleistocene based on the results of the study of the loess–soil series of the Sea of Azov. Izvestiya Rossiiskoi Akademii Nauk. Geographic Series 1, 7483. [in Russian]CrossRefGoogle Scholar
Veneman, P.L., Vepraskas, M.J., Bouma, J., 1976. The physical significance of soil mottling in a Wisconsin toposequence. Geoderma 15, 103118.CrossRefGoogle Scholar
Vepraskas, M.J., Lindbo, D.L., Stolt, M.H., 2018. Redoximorphic features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths, 2nd Edition. Elsevier, Amsterdam, pp. 425445.CrossRefGoogle Scholar
Vlaminck, S., Kehl, M., Lauer, T., Shahriari, A., Sharifi, J., Eckmeier, E., Lehndorff, E., Khormali, F., Frechen, M., 2016. Loess–soil sequence at Toshan (northern Iran): insights into late Pleistocene climate change. Quaternary International 399, 122135.CrossRefGoogle Scholar
Volvakh, A.O., Volvakh, N.E., Ovchinnikov, I.Y., Smolyaninova, L.G., Kurbanov, R.N., 2022. Loess–paleosol record of MIS 3–MIS 2 of north-east Cis–Salair plain, south of West Siberia. Quaternary International 620, 5874.CrossRefGoogle Scholar
Vorob'eva, L.A., 1998. Chemical Analysis of Soils: Textbook. Publishing House of Moscow State University, Moscow, 272 pp. [in Russian]Google Scholar
Wang, X., Wei, H., Khormali, F., Taheri, M., Kehl, M., Frechen, M., Lauer, T., Chen, F., 2017. Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quaternary International 429, 4151.CrossRefGoogle Scholar
Yaalon, D.H., 1997. Soils in the Mediterranean region: what makes them different? Catena 28, 157169.CrossRefGoogle Scholar
Yang, S., Ding, F., Ding, Z., 2006. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta 70, 16951709.CrossRefGoogle Scholar
Yang, S., Ding, Z., 2006. Winter–spring precipitation as the principal control on predominance of C3 plants in Central Asia over the past 1.77 Myr: evidence from δ13C of loess organic matter in Tajikistan. Palaeogeography, Palaeoclimatology, Palaeoecology 235, 330339.CrossRefGoogle Scholar
Youn, J.H., Seong, Y.B., Choi, J.H., Abdrakhmatov, K., Ormukov, C., 2014. Loess deposits in the northern Kyrgyz Tien Shan: implications for the paleoclimate reconstruction during the Late Quaternary. Catena 117, 8193.CrossRefGoogle Scholar
Yudina, A.V., Fomin, D.S., Valdes-Korovkin, I.A., Churilin, N.A., Aleksandrova, M.S., Golovleva, Y.A., Philipov, N.V., Kovda, I.V., Dymov, A.A., Milanovskiy, E.Yu., 2020. The ways to develop soil textural classification for laser diffraction method. Eurasian Soil Science 53, 15791595.CrossRefGoogle Scholar
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: forms and formation processes. Earth-Science Reviews 157, 117.CrossRefGoogle Scholar
Zdruli, P., Kapur, S., Çelik, I., 2011. Soils of the Mediterranean region, their characteristics, management and sustainable use. In: Kapur, S., Eswaran, H., Blum, W.E.H. (Eds.), Sustainable Land Management: Learning From the Past for the Future. Springer, Berlin, pp. 125142.Google Scholar
Supplementary material: File

Tokareva et al. supplementary material

Tokareva et al. supplementary material
Download Tokareva et al. supplementary material(File)
File 201.2 KB