Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T05:54:34.244Z Has data issue: false hasContentIssue false

Tripartite climate reversal in Central Europe 5600–5300 years ago

Published online by Cambridge University Press:  20 January 2017

Michel Magny*
Affiliation:
Laboratoire de Chrono-Ecologie, CNRS-UMR 6565, Faculté des Sciences et Techniques, 16 route de Gray, 25030 Besançon, France
Urs Leuzinger
Affiliation:
Archaeological Department of the Canton of Thurgau, Schlossmühlestrasse 15a, 8510 Frauenfeld, Switzerland
Sigmar Bortenschlager
Affiliation:
University of Innsbruck, Department of Botany, Division of Palynology, Systematics and Geobotany, Sternwartestraße 15, 6020 Innsbruck, Austria
*
*Corresponding author. Fax: +33 3 81 66 65 68.E-mail address:michel.magny@univ-fcomte.fr(M. Magny).

Abstract

The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600–5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akeret, Ö., Haas, J.N., Leuzinger, U., Jacomet, S., (1999). Plant macrofossils and pollen in goat/sheep faeces from the Neolithic lake-shore settlement Arbon-Bleiche 3, Switzerland. Holocene 9, 175182.Google Scholar
Ammann, B., Gaillard, M.-J., Lotter, A.F., (1996). Switzerland. Berglund, B.E., Birks, H.J.B., Ralska-Jasiewiczowa, M., Wright, H.E., Palaeoecological Events During the Last 15,000 Years. John Wiley and Sons, Chichester.647666.Google Scholar
Andreev, A.A., Tarasov, P.E., Siegert, C., Ebel, T., Klimanov, V.A., Melles, M., Bobrov, A.A., Deregiavin, Y.A., Lubinski, D.J., Hubberten, H.W., (2003). Late Pleistocene and Holocene vegetation and climate on the northern Taymyr Peninsula, Arctic Russia. Boreas 32, 484505.Google Scholar
Andrews, J.T., Giraudeau, J., (2003). Multi-proxy records showing significant Holocene environmental variability: the inner N. Iceland shelf (Hunafloi). Quaternary Science Reviews 22, 175193.Google Scholar
Arz, H.W., Lamy, F., Pätzold, J., Müller, P.J., Prins, M., (2003). Mediterranean moisture source for an early-Holocene Humid Period in the Northern Red Sea. Science 300, 118121.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., Wasserburg, G.J., (1999). The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israël. Earth and Planetary Science Letters 166, 8595.Google Scholar
Baroni, C., Orombelli, G., (1996). The Alpine ≪ Iceman ≫ and Holocene climatic change. Quaternary Research 46, 7883.Google Scholar
Beer, J., (2000). Long-term indirect indices of solar variability. Space Science Reviews 11, 5366.CrossRefGoogle Scholar
Benedict, J.B., (1973). Chronology of cirque glaciation, Colorado front range. Quaternary Research 3, 584599.Google Scholar
Bianchi, G.G., McCave, I.N., (1999). Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397, 515517.CrossRefGoogle Scholar
Blaauw, M., van Geel, B., van der Plicht, J., (2004). Solar forcing of climate change during the mid-Holocene: indications from raised bogs in the Netherlands. The Holocene 14, 3544.CrossRefGoogle Scholar
Blunier, T., Chapellaz, J., Schwander, J., Stauffer, B., Raynaud, D., (1995). Variations in atmospheric methane concentration during the Holocene epoch. Nature 374, 4649.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., de Menocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science 278, 12571266.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.Google Scholar
Bortenschlager, S., (1970). Waldgrenz- und Klimaschwankungen im pollenanalytischen Bild des Gurgler Rotmoos. Mitteilungen der Ostalpin-dinarischer Gesellschaft für Vegetationskunde 11, 1926.Google Scholar
Bossard, W.E., (1913). Gutachten über die Regulierung des Bodensees. Mitteilungen der Abteilung für Landesgeographie 3, 272.Google Scholar
Bradbury, J.P., Dean, W.E., Anderson, R.Y., (1993). Holocene climatic and limnologic history of the north-central United States as recorded on varved sediments of Elk Lake, Minnesota: a synthesis. Geological Society of America, Special Paper 276, 309328.Google Scholar
Calvo, E., Grimalt, J., Jansen, E., (2002). High resolution Uk/37 sea surface temperature reconstruction in the Norwegian sea during the Holocene. Quaternary Science Reviews 21, 13851394.Google Scholar
Carrion, J.S., (2002). Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, 20472066.Google Scholar
Chalié, F., Gasse, F., (2002). Late-Glacial–Holocene diatom record of water chemistry and lake-level change from the tropical East African Rift Lake Abiyata (Ethiopa). Palaeogeography, Palaeoclimatology, Palaeoecology 187, 259283.Google Scholar
Chambers, F.M., Ogle, M.I., Blackford, J.J., (1999). Palaeovironmental evidence for solar forcing of Holocene climate: linkages to solar science. Progress in Physical Geography 23, 181204.Google Scholar
Dahl-Jensen, D., Monsegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W., Bailing, N., (1998). Past temperatures directly from the Greenland ice sheet. Science 282, 268271.Google Scholar
Damnati, B., (2000). Holocene lake records in the Northern Hemisphere of Africa. Journal of African Earth Science 31, 253262.Google Scholar
DeMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., (2000). Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 347361.Google Scholar
Denton, G.H., Karlén, W., (1973). Holocene climatic variations: their pattern and possible cause. Quaternary Research 3, 155205.Google Scholar
Digerfeldt, G., (1988). Reconstruction and regional correlation of Holocene lake-level fluctuations in lake Bysjön, South Sweden. Boreas 17, 165182.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. John Wiley and Sons, Chichester.Google Scholar
Finkel, R.C., Nishiizumi, K., (1997). Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka. Journal of Geophysical Research 102, 2669926706.CrossRefGoogle Scholar
Fowell, S.J., Hansen, B.C.S., Peck, J.A., Khosbayar, P., Ganboed, E., (2003). Mid to late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quaternary Research 59, 353363.CrossRefGoogle Scholar
Gaillard, M.-J., (1985). Postglacial palaeoclimatic changes in Scandinavia and Central Europe. A tentative correlation based on studies of lake-level fluctuations. Ecologia Mediterranea 11, 159175.Google Scholar
Gallay, A., Kaenel, G., (1981). Repères archéologiques pour une histoire des terrasses du Léman. Archives Suisses d'Anthropologie Générale 45, 129157.Google Scholar
Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Bingyan, L., Yuanfang, L., Qing, L., Mélières, F., Van Campo, E., Fubao, W., Qingsong, Z., (1991). A 13,000 year climate record from western Tibet. Nature 353, 742745.Google Scholar
Gasse, F., Fontes, J.C., Van Campo, E., Wei, K., (1996). Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 7992.Google Scholar
Grove, J.M., (1988). The Little Ice Age. Methuen, London.Google Scholar
Haas, J.N., (1996). Neorhabdocoela oocytes-palaeoecological indicators found in pollen preparations from Holocene freshwater lake sediments. Review of Palaeobotany and Palynology 91, 371382.Google Scholar
Haas, J.N., (2002). 6000 years of tree pollarding and leaf-hay foddering of livestock in the Alpine Area. Austrian Journal of Forest Science 119, 231240.Google Scholar
Haas, J.N., Hadorn, P.H., (1998). Die Vegetations- und Kulturlandschaftsgeschichte des Seebachtals von der Mittelsteinzeit bis zum Frühmittelalter anhand von Pollenanalysen. Hasenfratz, A., Schnyder, M., Das Seebachtal – Eine Archäologische und paläoökologische Bestandesaufnahme. Forschungen Im Seebachtal 1. Archäologie im Thurgau vol. 4, Huber und Co AG, Frauenfeld, Switzerland.221255.Google Scholar
Haas, J.N., Magny, M., (2004). Die jungsteinzeitlichen Besiedlung von Arbon-Bleiche 3 im Rahmen der abrupten, globalen Klimaschwankungen vor 5600–5000 Jahren. Jacomet, S., Schibler, J., Leuzinger, U., Die jungsteinzeitliche Seeufersiedlung Arbon-Bleiche 3: Umwelt und Wirtschaft. Archäologie im Thurgau vol. 12, Huber und Co AG, Frauenfeld, Switzerland.4149.Google Scholar
Haas, J.N., McAndrews, J.H., (2000). The summer drought related hemlock (Tsuga canadensis) decline in Eastern North America 5700 to 5100 years ago.. In: McManus, K., (ed), Proceedings: Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America, June 22–24, 1999, Durham, New Hampshire. United States Department of Agriculture, Forest Service, Northeastern Research Station, General Technical Report NE-267, 8188.Google Scholar
Haas, J.N., Richoz, I., Tinner, W., Wick, L., (1998). Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8, 301304.Google Scholar
Harrison, S.P., Prentice, I.C., Guiot, J., (1993). Climatic controls on Holocene lake-level changes in Europe. Climate Dynamics 8, 189200.Google Scholar
Heikkikä, M., Seppä, H., (2003). A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quaternary Science Reviews 22, 541554.Google Scholar
Heusser, C.J., (1998). Deglacial paleoclimate of the American sector of the Southern Ocean: Late Glacial–Holocene records from the latitude of Canal Beagle (55°S), Argentine Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology 141, 277301.Google Scholar
Hjort, C., Ingolfsson, O., Müller, P., Lirio, J.M., (1997). Holocene glacial history and sea-level changes on James Ross Island, Antarctic. Journal of Quaternary Science 12, 259273.Google Scholar
Hodell, D.A., Kanfoush, S.L., Shemesh, A., Crosta, X., Charles, C.D., Guilderson, T.P., (2001). Abrupt cooling of Antarctic surface waters and sea ice expansion in the South Atlantic sector of the Southern Ocean at 5000 cal yr BP. Quaternary Research 56, 191198.Google Scholar
Höpfel, F., Platzer, W., Spindler, K., (1992). Der Mann im Eis. Band 1. Bericht über das Internationale Symposium 1992 in Innsbruck vol. 187, Veröffentlichungen der Universität Innsbruck, Google Scholar
Hormes, A., Müller, B.U., Schlüchter, C., (2001). The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11, 255265.Google Scholar
Hughes, P.D.M., Mauquoy, D., Barber, K.E., Langdon, P.G., (2000). Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. The Holocene 10, 465479.Google Scholar
Jennings, A.E., Knudsen, K.L., Hald, M., Hansen, V., Andrews, J.T., (2002). A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf. The Holocene 12, 4958.Google Scholar
Jerardino, A., (1995). Late Holocene Neoglacial episodes in southern South America and southern Africa: a comparison. The Holocene 5, 361368.Google Scholar
Johnsen, S., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hansson, M., Johnsson, P., Steffensen, P., Sveinbjornsdottir, A.E., (1992). A deep ice core from East Greenland. Meddelelser om Grønland. Geoscience 29, 122.Google Scholar
Keigwin, L.D., (1996). The little ice age and medieval warm period in the Sargasso Sea. Science 274, 15041508.Google Scholar
Kiefer, F., (1957). Höchst-, Mittel- und Niedrigstwasserstände des Bodensees im Zeitraum 1871–1955. Beiträge zur naturkundlichen Forschung in Südwestdeutschland 16, 3943.Google Scholar
Kirby, M.E., Mullins, H.T., Patterson, W.P., Burnett, A.W., (2002). Late Glacial–Holocene atmospheric circulation and precipitation in the northeast United States inferred from modern calibrated stable oxygen and carbon isotopes. GSA Bulletin 114, 13261340.Google Scholar
Kirkbride, M.P., Dugmore, A.J., (2001). Timing and significance of mid-Holocene glacier advances in northern and central Iceland. Journal of Quaternary Science 16, 145153.CrossRefGoogle Scholar
Kutschera, W., Müller, W., (2003). “Isotope language” of the Alpine Iceman investigated with AMS and MS. Nuclear Instruments and Methods in Physics Research B 204, 705719.Google Scholar
Lamb, H.H., (1977). Climate: Past, Present, Future. Methuen, London.Google Scholar
Lamy, F., Rühlemann, C., Hebbeln, D., Wefer, G., (2002). High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene. Paleoceanography 17, 16/116/10.Google Scholar
Langdon, P.G., Barber, K.E., Hughes, P.D.M., (2003). A 7500-evidence year peat-based palaeoclimatic reconstruction and for an 1100-year cyclicity in bog surface wetness from Temple Hill Moss, Pentland Hills, southeast Scotland. Quaternary Science Reviews 22, 259274.CrossRefGoogle Scholar
Leuzinger, U., (2000). Die jungsteinzeitliche Seeufersiedlung Arbon-Bleiche 3. Befunde. Archäologie im Thurgau vol. 9, Verlag Huber, Frauenfeld.1188.Google Scholar
Magny, M., (1992). Holocene lake-level fluctuations in Jura and the northern subalpine ranges. France: regional pattern and climatic implications. Boreas 21, 319334.Google Scholar
Magny, M., (1993). Solar influences on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric 14C record. Quaternary Research 40, 19.Google Scholar
Magny, M., (1998). Reconstruction of Holocene lake-level changes in the Jura (France): methods and results. Paläoklimaforschung 25, 6785.Google Scholar
Magny, M., (1999). Lake-level fluctuations in the Jura and French subalpine ranges associated with ice-rafting events in the North Atlantic and variations in the polar atmospheric circulation. Quaternaire 10, 6164.Google Scholar
Magny, M., (2004). Holocene climatic variability as reflected by mid-European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quaternary International 113, 6579.Google Scholar
Magny, M., Haas, J.N., (2004). A major widespread climatic change around 5300 cal. Yr BP at the time of the Alpine Iceman. Journal of Quaternary Science 19, 423430.Google Scholar
Magny, M., Guiot, J., Schoellammer, P., (2001). Quantitative reconstruction of Younger Dryas to mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data. Quaternary Research 56, 170180.CrossRefGoogle Scholar
Magny, M., Bégeot, C., Guiot, J., Marguet, A., Billaud, Y., (2003). Reconstruction and palaeoclimatic interpretation of mid-Holocene vegetation and lake-level changes at Saint-Jorioz, lake Annecy, French Pre-Alps. The Holocene 13, 265275.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V.Y., Mosley-Thompson, E., Petit, J.R., Steig, E.J., Stievenard, M., Vaikmae, R., (2000). Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research 54, 348358.Google Scholar
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Prentice, M., (1997). Major features and forcing of high latitude northern hemispheric atmospheric circulation using a 110 000 year long glaciochemical series. Journal of Geophysical Research 102, 2634526366.Google Scholar
Mercer, J.H., (1976). Glacial history of southermost South America. Quaternary Research 6, 125166.Google Scholar
Mitchum, R.M., Vail, J.R., Thompson, S., (1977). The depositional sequence as a basic unit for stratigraphic analysis. American Association Geological Bulletin, Memory 26, 5362.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., (1991). Pollen Analysis. Blackwell Scientific Publications, Oxford.Google Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., (2003). A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13, 465476.Google Scholar
Mullins, H.T., Halfman, J.D., (2001). High-resolution seismic reflection evidence for middle Holocene environmental change, Owasco Lake, New York. Quaternary Research 55, 322331.Google Scholar
Muscheler, R., Beer, J., Wagner, G., Finkel, R.G., (2000). Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature 408, 567570.Google Scholar
Nesje, A., Matthews, J.A., Dahl, S.O., Berrisford, M.S., Andersson, C., (2001). Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11, 267280.Google Scholar
Nicolussi, K., Patzelt, G., (2000). Discovery of early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene 10, 191199.Google Scholar
Noon, P.E., Leng, M.J., Jones, V.J., (2003). Oxygen-isotope (d18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica. The Holocene 13, 251263.Google Scholar
Oppo, W., McManus, J.F., Cullen, J.L., (2003). Deepwater variability in the Holocene epoch. Nature 422, 277278.Google Scholar
Patzelt, G., (1977). Der zeitliche Ablauf und das Ausmass postglazialer Klimaschwankungen in den Alpen. Frenzel, B., Dendrochronologie Und Postglaziale Klimaschwankungen in Europa. Steiner Verlag, 248259.Google Scholar
Payette, S., Eronen, M., Jasinski, P., (2002). The circumboreal tundra–taiga interface: late Pleistocene and Holocene changes. Ambio Special Report 12, 1522.Google Scholar
Porter, S.C., (2000). Onset of neoglaciation in the Southern hemisphere. Journal of Quaternary Science 15, 395408.Google Scholar
Porter, S.C., Orombelli, G., (1985). Glacier contraction during the middle Holocene in the western Italian Alps: evidence and implications. Geology 13, 296298.Google Scholar
Punt, W., (1976). The Northwest European Pollen Flora I. Elsevier, Amsterdam.1145.Google Scholar
Punt, W., Blackmore, S., Hoen, P.P., (1995). The Northwest European Pollen Flora VII. Elsevier, Amsterdam.1275.Google Scholar
Reasoner, M.A., Davis, P.T., Osborn, G., (2001). Evaluation of proposed early-Holocene advances of alpine glaciers in the North Cascade Range, Washington State, USA: constraints provided by palaeoenvironmental reconstructions. The Holocene 11, 607611.Google Scholar
Renssen, H., van Geel, B., van der Plicht, J., Magny, M., (2000). Reduced solar activity as a trigger for the start of the Younger Dryas?. Quaternary International 68–71, 373383.Google Scholar
Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., Hevr¢y, K., (2003). A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography 18, 17/117/14.Google Scholar
Rochefort, R.M., Little, R.L., Woodward, A., Peterson, D.L., (1994). Changes in sub-alpine tree distribution in western North America: a review of climatic and other causal factors. The Holocene 4, 89100.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., (1999). An ∼15,000 year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, 516520.Google Scholar
Rosqvist, G.C., Schuber, P., (2003). Millennial-scale climate changes on South Georgia, Southern Ocean. Quaternary Research 59, 470475.Google Scholar
Sandweiss, D.H., (2003). Terminal Pleistocene trough mid-Holocene archaeological sites as palaeoclimatic archives for the Peruvian coast. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 2340.Google Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson, J.B., Rollins, H.B., Clement, A., (2001). Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 7, 603606.Google Scholar
Schmidt, R., Koinig, K.A., Thompson, R., Kamenik, C., (2002). A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeography, Palaeoclimatology, Palaeoecology 187, 101120.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., Duplessy, J.C., (1993). Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322324.Google Scholar
Solovieva, N., Jones, V.J., (2002). A multiproxy record of Holocene environmental changes in the central Kola Peninsula, northwest Russia. Journal of Quaternary Science 17, 303318.Google Scholar
Starkel, L., (1991). Long-distance correlation of fluvial events in the temperate zone. Starkel, L., Gregory, K.J., Thornes, J.B., Temperate Palaeohydrology Wiley, New York.473495.Google Scholar
Steig, E., (1999). Mid-Holocene climate change. Science 286, 14851486.Google Scholar
Steig, E.J., Hart, C.P., White, J.W.C., Cunningham, W.L., Davis, M.D., Saltzman, E.S., (1998). Changes in climate, ocean and ice sheet conditions in the Ross Embayment, Antarctica, at 6 ka. Annals of Glaciology 27, 305310.Google Scholar
Street-Perott, F.A., Perrott, R.A., (1990). Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean Circulation. Nature 343, 607612.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., (1998). Intcal98 radiocarbon age calibration, 24 000–0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Svendsen, J.I., Mangerud, J., (1997). Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene 7, 4557.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.N., Henderson, K.A., Cole Dai, J., Bolzan, J.F., Liu, K.B., (1995). Late Glacial Stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, 4650.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.-N., Mikhalenko, V.N., Hardy, D.R., Beer, J., (2002). Kilimanjaro ice core records: evidence of Holocene climate change in Tropical Africa. Science 298, 589593.Google Scholar
Tinner, W., Theurillat, J.-P., (2003). Uppermost limit, extent and fluctuations of the timberline and treeline ecocline in the Swiss central Alps during the past 11 500 years. Arctic, Antarctic and Alpne Research 35, 158169.Google Scholar
Väliranta, M., Kaakinen, A., Kuhry, P., (2003). Holocene climate and landscape evolution East of the Pechora delta, east-European Russian Arctic. Quaternary Research 59, 335344.Google Scholar
van Geel, B., Buurman, J., Waterbolk, H.T., (1996). Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, 451460.Google Scholar
Vernet, R., Faure, H., (2000). Isotopic chronology of the Sahara and the Sahel during the late Pleistocene and the early and Mid-Holocene (15,000–6000 BP). Quaternary International 68–71, 385387.Google Scholar
Wagner, G., Schröder, H.G., Gurtz, J., (2002). A model approach for in and outflow calculation of Upper Lake Constance—an investigation of a 60 about the flood of 1999. Limnologica 32, 2732.Google Scholar
Wenzens, G., (1999). Fluctuations of outlet and valley glaciers in the Southern Andes (Argentina) during the past 13,000 years. Quaternary Research 51, 238247.Google Scholar
Wessels, M., (1998). Natural environmental changes indicated by Late Glacial and Holocene sediments from Lake Constance, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 140, 421432.Google Scholar
Wolf, C., Hurni, J.-P., (2002). L'environnement forestier au Néolithique final à travers l'étude dendrochronologique des sites littoraux du lac de Neuchâtel. 2700 av. J.-C.: point de rupture. Equilibres et ruptures dans les écosystèmes durant les 20 derniers millénaires en Europe de l'Ouest, Richard H. et Vignot A. (dir.), ALUB, Besançon. 387402.Google Scholar
Young, S.B., Schofield, K.E., (1973). Pollen evidence for late-Quaternary climate changes on Kerguelen Islands. 2000. Nature 245, 311312.CrossRefGoogle Scholar
Zoller, H., (1977). Alter und Ausmass postglazialer Klimaschwankungen in den Schweizer Alpen. Frenzel, B., Dendrochronologie Und Postglaziale Klimaschwankungen in Europa. Steiner Verlag, Wiesbaden.271281.Google Scholar