Article contents
Uranium-Series Ages of Marine Terrace Corals from the Pacific Coast of North America and Implications for Last-Interglacial Sea Level History
Published online by Cambridge University Press: 20 January 2017
Abstract
Few of the marine terraces along the Pacific coast of North America have been dated using uranium-series techniques. Ten terrace sequences from southern Oregon to southern Baja California Sur have yielded fossil corals in quantities suitable for U-series dating by alpha spectrometry. U-series-dated terraces representing the ∼80,000 yr sea-level high stand are identified in five areas (Bandon, Oregon; Point Arena, San Nicolas Island, and Point Loma, California; and Punta Banda, Baja California); terraces representing the ∼125,000 yr sea-level high stand are identified in eight areas (Cayucos, San Luis Obispo Bay, San Nicolas Island, San Clemente Island, and Point Loma, California; Punta Bands and Isla Guadalupe, Baja California; and Cabo Pulmo, Baja California Sur). On San Nicolas Island, Point Loma, and Punta Bands, both the ∼80,000 and the ∼125,000 yr terraces are dated. Terraces that may represent the ∼105,000 sea-level high stand are rarely preserved and none has yielded corals for U-series dating. Similarity of coral ages from midlatitude, erosional marine terraces with coral ages from emergent, constructional reefs on tropical coastlines suggests a common forcing mechanism, namely glacioeustatically controlled fluctuations in sea level superimposed on steady tectonic uplift. The low marine terrace dated at ∼125,000 yr on Isla Guadalupe, Baja California, presumed to be tectonically stable, supports evidence from other localities for a +6-m sea level at that time. Data from the Pacific Coast and a compilation of data from other coasts indicate that sea levels at ∼80,000 and ∼105,000 yr may have been closer to present sea level (within a few meters) than previous studies have suggested.
- Type
- Research Article
- Information
- Copyright
- University of Washington
References
- 72
- Cited by