Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T13:30:27.147Z Has data issue: false hasContentIssue false

The use of ‘bomb spike’ calibration and high-precision AMS 14C analyses to date salt-marsh sediments deposited during the past three centuries

Published online by Cambridge University Press:  20 January 2017

William A. Marshall*
Affiliation:
School of Geography, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
W. Roland Gehrels
Affiliation:
School of Geography, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
Mark H. Garnett
Affiliation:
National Environment Research Council Radiocarbon Laboratory, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
Stewart P.H.T. Freeman
Affiliation:
Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
Colin Maden
Affiliation:
Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
Sheng Xu
Affiliation:
Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
*
*Corresponding author. Fax: +44 1752 233054.E-mail addresses:wmarshall@plymouth.ac.uk (W.A. Marshall), W.R.Gehrels@plymouth.ac.uk (W.R. Gehrels), M.Garnett@nercrcl.gla.ac.uk (M.H. Garnett), s.freeman@suerc.gla.ac.uk (S.P.H.T. Freeman), c.maden@suerc.gla.ac.uk (C. Maden), s.xu@suerc.gla.ac.uk (S. Xu).

Abstract

A combination of ‘bomb spike’ calibration and conventional calibration of AMS 14C dating has been used to determine a detailed age-depth model for a 1-m sediment section collected from a salt marsh in Poole Harbour, southern England. These data were compared with the chronology obtained from 210Pb analysis and 137Cs age markers. We report post bomb values of over 1.46 F14C (> 146% modern 14C), and both the rising and falling limbs of the atmospheric ‘bomb spike’ are identified. Five pre-bomb samples were analysed using multi-target high-precision 2‰ AMS analysis, and after the replicates were combined the one-sigma uncertainty was as low as ± 9 14C yr on some ages. These data, and an additional three normal-precision pre-bomb 14C samples, were calibrated using CALIB 5.0 and the chronology constrained using the ‘prior knowledge’ of independent age markers obtained from the analysis of pollen and spheroidal carbonaceous particle (SCPs). No agreement was found between the 14C ‘bomb spike’ dates and the CRS 210Pb chronology modelled for this sequence. In addition, poor agreement was found between the signal of the 1960s weapons test fallout indicated by the 14C ‘bomb spike’ dates and the timing suggested by the 137Cs data. This disagreement is attributed to the influence of the local discharge of 137Cs from the former UKAEA site at Winfrith. We use our new chronology to confirm the existence of an acceleration in sedimentation rates in Poole Harbour during the last 100 yr previously reported for this site by Long et al. (Long, A.J., Scaife, R.G., Edwards, R.J. 1999. Pine Pollen in intertidal sediments from Poole Harbour, UK; implications for late-Holocene sediment accretion rates and sea-level rise. Quaternary International, 55, 3–16.), and conclude that ‘bomb spike’ 14C calibration dating may offer a more robust alternative to the use of 210Pb chronologies for dating sediment deposition in salt-marsh environments. In addition, we demonstrate how the use of high-precision AMS analysis has the potential for reducing some of the uncertainties involved in the high-resolution dating of recent salt-marsh sediments.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abril, J.M. (2004). Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies.. Environmental Pollution 129, 3137.CrossRefGoogle ScholarPubMed
Allen, J.R.L. (2003). An eclectic morphostratigraphic model for the sedimentary response to Holocene sea-level rise in northwest Europe.. Sedimentary Geology 161, 3154.CrossRefGoogle Scholar
Allen, J.R.L., Duffy, M.J.(1998). Medium-term sedimentation on high intertidal mudflats and salt marshes in the Severn Estuary, SW Britain: the role of wind and tide.. Marine Geology 150, 127.CrossRefGoogle Scholar
Appleby, P.G. (2001). Chronostratigraphic techniques in recent sediments.. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques, Kluwer Academic 171203.Google Scholar
Appleby, P.G., Oldfield, F.(1978). The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment.. Catena 5, 18.CrossRefGoogle Scholar
Appleby, P.G., Nolan, P.J., Gifford, D.W., Godfrey, M.J., Oldfield, F., Anderson, N.J., Battarbee, R.W.(1986). 210Pb dating by low background gamma counting.. Hydrobiologia 141, 2127.CrossRefGoogle Scholar
Appleby, P.G., Richardson, N., Nolan, P.J.(1991). 241Am dating of lake sediments.. Hydrobiologia 214, 3542.CrossRefGoogle Scholar
Bartholdy, J., Christiansen, C., Kunzendorf, H.(2004). Long term variations in backbarrier salt marsh deposition on the Skallingen peninsula, the Danish Wadden Sea.. Marine Geology 203, 121.CrossRefGoogle Scholar
Beks, J.P. (2000). Storage and distribution of plutonium, 241Am, 137Cs and 210Pbxs in North Sea sediments.. Continental Shelf Research 20, 19411964.CrossRefGoogle Scholar
L.A., Boorman.(2003). Saltmarsh Review. An overview of coastal saltmarshes, their dynamic and sensitivity characteristics for conservation and management..JNCC Report, No. 334. Joint Nature Conservation Committee, Peterborough.Google Scholar
C.R., Bristow, E.C., Freshney, I.E., Penn.(1991). Geology of the Country around Bournemouth. Memoir for 1:50,000 Geological Sheet 329 (England and Wales)..HMSO, London.Google Scholar
Clifton, J., McDonald, P., Plater, A., Oldfield, F.(1999). Derivation of a grain-size proxy to aid the modelling and prediction of radionuclide activity in salt marshes and mud flats of the Eastern Irish Sea.. Estuarine, Coastal, and Shelf Science 48, 511518.CrossRefGoogle Scholar
Dellapenna, T.M., Kuehl, S.A., Schaffner, L.C.(2003). Ephemeral deposition, seabed mixing and fine-scale strata formation in the York River estuary, Chesapeake Bay.. Estuarine, Coastal and Shelf Science 58, 621643.CrossRefGoogle Scholar
Donders, T.H., Wagner, F., van der Borg, K., de Jong, A.F.M., Visscher, H.(2004). A novel approach for developing high-resolution sub-fossil peat chronologies with 14C dating.. Radiocarbon 46, 1 455463.CrossRefGoogle Scholar
Edwards, R.J. (2001). Mid- to late Holocene relative sea-level change in Poole Harbour, southern England.. Journal of Quaternary Science 16, 221235.CrossRefGoogle Scholar
Garnett, M.H., Stevenson, A.C.(2004). Testing the use of bomb radiocarbon to date the surface layers of blanket peat.. Radiocarbon 46, 2 841851.CrossRefGoogle Scholar
Gehrels, W.R. (2000). Using foraminiferal transfer functions to produce high-resolution sea-level records from salt-marsh deposits, Main, USA.. The Holocene 10, 367376.CrossRefGoogle Scholar
Gehrels, W.R., Belknap, D.F., Black, S., Newnham, R.M.(2002). Rapid sea-level rise in the Gulf of Maine, USA, since AD 1800.. The Holocene 12, 383393.CrossRefGoogle Scholar
Gehrels, W.R., Kirby, J.R., Prokoph, A., Newnham, R.M., Achterberg, E.P., Evans, H., Black, S., Scott, D.B.(2005). Onset of recent rapid sea-level rise in the western Atlantic Ocean.. Quaternary Science Reviews 24, 18–19 20832100.CrossRefGoogle Scholar
Goodsite, M.E., Rom, W., Heinemeier, J., Lange, T., Ooi, S., Appleby, P.G., Shotyk, W., van der Knaap, W.O., Lohse, C., Hansen, T.S.(2001). High-resolution AMS 14C dating of post-bomb peat archives of atmospheric pollutants.. Radiocarbon 43, 2B 495515.CrossRefGoogle Scholar
Harvey, M.M., Hansom, J.D., MacKenzie, A.B.(2007). Constraints on the use of anthropogenic radionuclide-derived chronologies for saltmarsh sediments.. Journal of Environmental Radioactivity 95, 126148.CrossRefGoogle ScholarPubMed
Haslett, S.K., Strawbridge, F., Martin, N.A., Davies, C.F.C.(2001). Vertical saltmarsh accretion and its relationship to sea-level in the Severn Estuary, UK: an investigation using foraminifera as tidal indicators.. Estuarine Coastal and Shelf Science 52, 1 143153.CrossRefGoogle Scholar
Hua, Q., Barbetti, M.(2004). Review of tropospheric Bomb 14C data for carbon cycle modeling and age calibration purposes.. Radiocarbon 46, 12731298.CrossRefGoogle Scholar
Jones, V.J., Battarbee, R.W., Rose, N.L., Curtis, C., Appleby, P.G., Harriman, R., Shine, A.J.(1997). Evidence for the pollution of Loch Ness from the analysis of its recent sediments.. The Science of the Total Environment 203, 3749.CrossRefGoogle Scholar
Kim, G., Hussain, N., Church, T.M., Careyb, W.L.(1997). The fallout isotope 207Bi in a Delaware salt marsh: a comparison with 210Pb and 137Cs as a geochronological tool.. The Science of the Total Environment 196, 3141.CrossRefGoogle Scholar
Krey, P.W., Hardy, E.P., Toonkey, L.E.(1976). The distribution of plutonium and americium with depth in soil at Rocky Flats. USERDA Environmental Quarterly Report. HASL-318.U.S. Atomic Energy Commission.. Health and Safety Lab. New York.Google Scholar
Lacambra, C., Cutts, N., Allen, J., Burd, F., Elliott, M.(2004). Spartina anglica: a review of its status, dynamics and management. English Nature Research Reports, Number 527.. English Nature, Peterborough.Google Scholar
Long, A.J., Scaife, R.G., Edwards, R.J.(1999). Pine pollen in intertidal sediments from Poole Harbour, UK; implications for late-Holocene sediment accretion rates and sea-level rise.. Quaternary International 55, 316.CrossRefGoogle Scholar
Maringer, F.J. (1996). The partitioning of natural radionuclides in a large Alpine river.. Environment International 25, 1 323331.CrossRefGoogle Scholar
McCubbin, D., Leonard, K.S., Maher, B.A., Hamilton, E.I.(2000). Association of 210Po(210Pb), 239+240Pu and 241Am with different mineral fractions of a beach sand at Seascale. Cumbria, UK.. The Science of the Total Environment 254, 115.CrossRefGoogle Scholar
McGee, E.J., Gallagher, D., Mitchell, P.I., Baillie, M., Brown, D., Keogh, M.(2004). Recent chronologies for tree rings and terrestrial archives using 14C bomb fallout history.. Geochimica et Cosmochimica Acta 68, 11 25092516.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., Collinson, M.E.(1991). Pollen Analysis.. Blackwell Scientific Publications, London.Google Scholar
Morris, K., Butterworth, J.C., Livens, F.R.(2000). Evidence for the remobilization of Sellafield Waste Radionuclides in an Intertidal Salt Marsh, West Cumbria, U.K. Estuarine.. Coastal and Shelf Science 51, 613625.CrossRefGoogle Scholar
Plater, A.J., Horton, B.P., Haworth, E.Y., Appleby, P.G., Zong, Y., Wright, M.R., Rutherford, M.M.(2000). Holocene tidal levels and sedimentation rates using a diatom-based palaeoenvironmental reconstruction: the Tees estuary, northeastern England.. The Holocene 10, 4 441452.CrossRefGoogle Scholar
Pourchet, M., Magand, O., Frezzotti, M., Ekaykin, A., Winther, J.-G.(2003). Radionuclides deposition over Antarctica.. Journal of Environmental Radioactivity 68, 137158.CrossRefGoogle ScholarPubMed
Price, G., Winkle, K., Gehrels, W.R.(2005). A geochemical record of the mining history of the Erme Estuary, south Devon.. UK Gregory D. Marine Pollution Bulletin 50, 17061712.CrossRefGoogle ScholarPubMed
Raybould, A.F. (2000). Hydrographical, ecological and evolutionary change associated with Spartina anglica in Poole harbour.. Sherwood, E.B.R., Gardiner, B.G., Harris, T. British Saltmarshes, Forrest Text for the Linnean 129142.Google Scholar
Reimer, P.J., Reimer, R.W.(2004). Discussion: reporting and calibration of post-bomb 14C data.. Radiocarbon 46, 3 12991304.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., BronkRamsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E.(2004). INTCAL04 Terrestrial radiocarbon age calibration, 26–0 ka BP.. Radiocarbon 46, 10291058.Google Scholar
Robbins, J.A. (1978). Geochemical and geophysical applications of radioactive lead.. Nriagu, J.O. Biogeochemistry of Lead in the Environment Elsevier Scientific, Amsterdam.285393.Google Scholar
Rose, N.L. (2001). Fly ash particles.. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments Physical and Chemical Techniques vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands.319349.CrossRefGoogle Scholar
Rose, N., Appleby, P.G.(2005). Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom.. Journal of Paleolimnology 34, 3 349361.CrossRefGoogle Scholar
Rose, N.L., Juggins, S., Watt, J.(1999). The characterisation of carbonaceous fly-ash particles from major European fossil-fuel types and applications to environmental samples.. Atmospheric Environment 33, 26992713.CrossRefGoogle Scholar
Shennan, I. (1989). Holocene crustal movements and sea-level change in Great Britain.. Journal of Quaternary Science 4, 7789.CrossRefGoogle Scholar
Shennan, I., Horton, B.(2002). Holocene land- and sea-level changes in Great Britain.. Journal of Quaternary Science 17, 511526.CrossRefGoogle Scholar
Shotyk, W., Goodsite, M.E., Roos-Barraclough, F., Frei, R., Heinemeier, J., Asmund, G., Lohse, C., Hansen, T.S.(2003). Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”.. Geochimica et Cosmochimica Acta 67, 21 39914011.CrossRefGoogle Scholar
Smith, J.N. (2001). Why should we believe 210Pb sediment geochronologies?.. Journal of Environmental Radioactivity 55, 121123.CrossRefGoogle ScholarPubMed
Stevenson, C.J., Ward, L.G., Kearney, M.S.(1986). Vertical accretion in marshes with varying rates of sea-level rise.. Wolfe, D. Estuarine Variability Academic Press Inc., San Diego.241259.CrossRefGoogle Scholar
Stuiver, M., Polach, H.A.(1977). Discussion: reporting of 14C data.. Radiocarbon 19, 3 355363.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F.(1998). Anthropogenic and solar components of hemispheric C-14.. Geophysical Research Letters 25, 3 329332.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., VanderPlicht, J., Spurk, M.(1998). INTCAL98 radiocarbon age calibration, 24,000-0 cal BP.. Radiocarbon 40, 3 10411083.CrossRefGoogle Scholar
Stuiver, M., P.J., Reimer, R.W., Reimer.(2005). CALIB 5.0.. [WWW_program_and_documentation]. Online at : http://radiocarbon.pa.qub.ac.uk/ (Accessed 02/12/05).Google Scholar
Telford, R.J., Heegaard, E., Birks, H.J.B.(2004). The intercept is a poor estimate of a calibrated radiocarbon age.. The Holocene 14, 2 296298.CrossRefGoogle Scholar
Thompson, J.D., McNeilly, T., Gray, A.J.(1991). Population variation in Spartina anglica C.E. Hubbard.. New Phytologist 117, 115128.CrossRefGoogle Scholar
Thomson, J., Dyer, F.M., Croudace, I.W.(2002). Records of radionuclide deposition in two salt marshes in the United Kingdom with contrasting redox and accumulation conditions.. Geochimica et Cosmochimica Acta 66, 6 10111023.CrossRefGoogle Scholar
Turetsky, M.R., Manning, S.W., Wieder, R.K.(2004). Dating Recent Peat Deposits.. Wetlands 24, 2 324356.CrossRefGoogle Scholar
(2000). UNSCEAR..Sources and Effects of Ionizing Radiation.UN, New York.Google Scholar
Widdows, J., Brown, S., Brinsley, M.D., Salkeld, P.N., Elliott, M.(2000). Temporal changes in intertidal sediment erodability: influence of biological and climatic factors.. Continental Shelf Research 20, 12751289.CrossRefGoogle Scholar
Wood, M., Kelley, J.T., Belknap, D.F.(1989). Paterns of sediment accumulation in the Tidal Marshes of Maine.. Estuaries 4, 237245.CrossRefGoogle Scholar
Yang, H., Rose, N.L., Battarbee, R.W.(2001). Dating of recent catchment peats using spheroidal carbonaceous particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland.. The Holocene 11, 593597.CrossRefGoogle Scholar
Zong, Y.Q., Horton, B.P.(1999). Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK.. Journal of Quaternary Science 14, 2 153167.3.0.CO;2-6>CrossRefGoogle Scholar