Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:18:51.778Z Has data issue: false hasContentIssue false

Variability of Monsoon Climate in East Asia at the End of the Last Glaciation

Published online by Cambridge University Press:  20 January 2017

Zhou Weijian
Affiliation:
National Laboratory of Loess and Quaternary Geology, P.O. Box 17, Xi Ying Rd. 22-2, Xian 710054, China Northwest University, Xian 710069, China
Douglas J. Donahue
Affiliation:
NSF—Arizona Accelerator Mass Spectrometry Facility, Department of Physics, University of Arizona, Tucson, Arizona, 85721
Stephen C. Porter
Affiliation:
Quaternary Research Center, University of Washington, Seattle, Washington, 98195 and National Laboratory of Loess and Quaternary Geology, P.O. Box 17, Xi Ying Rd. 22-2, Xian, 710054, China
Timothy A. Jull
Affiliation:
NSF—Arizona Accelerator Mass Spectrometry Facility, Department of Physics, University of Arizona, Tucson, Arizona, 85721
Li Xiaoqiang
Affiliation:
National Laboratory of Loess and Quaternary Geology, P.O. Box 17, Xi Ying Rd. 22-2, Xian 710054, China Northwest University, Xian 710069, China
Minze Stuiver
Affiliation:
Quaternary Research Center, University of Washington, Seattle, Washington, 98195 and National Laboratory of Loess and Quaternary Geology, P.O. Box 17, Xi Ying Rd. 22-2, Xian, 710054, China
An Zhisheng
Affiliation:
National Laboratory of Loess and Quaternary Geology, P.O. Box 17, Xi Ying Rd. 22-2, Xian 710054, China Northwest University, Xian 710069, China
Eiji Matsumoto
Affiliation:
Institute for Hydrospheric–Atmospheric Sciences, Nagoya University, Japan
Dong Guangrong
Affiliation:
Lanzhou Institute of Desert, Academia Sinica, Lanzhou 730000, China

Abstract

High-resolution paleomonsoon proxy records from peat and eolian sand–paleosol sequences at the desert–loess transition zone in China denote a rapid oscillation from cold–dry conditions (11,200–10,600 14C yr B.P.) to cool–humid conditions (10,600–10,200 14C yr B.P.), followed by a return to cold–dry climate (10,200–10,000 14C yr B.P.). Variations in precipitation proxies suggest that significant climatic variability occurred in monsoonal eastern Asia during the Younger Dryas interval. Late-glacial climate in the Chinese desert–loess belt that lies downwind from Europe was strongly influenced by cold air from high latitudes and from the North Atlantic via the westerlies. The inferred precipitation variations were likely caused by variations in the strength of the Siberian high, which influenced the pressure gradient between land and ocean and therefore influenced the position of the East Asian monsoon front.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z. S., Kukla, G., Porter, S. C., and Xiao, J. L. (1991a). Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 2936.Google Scholar
An, Z. S., Porter, S. C., Zhou, W. J., Lu, Y. C., Donahue, D. J., Head, M. J., Wu, X. H., Ren, J. Z., and Zheng, H. B. (1993). Episode of strengthened summer monsoon climate of Younger Dryas age on the Loess Plateau of Central China. Quaternary Research 39, 4554.Google Scholar
An, Z. S., and Xiao, J. L. (1990). Study on the eolian dust flux over the Loess Plateau: An example. Chinese Science Bulletin 35(19), 16271631.Google Scholar
An, Z. S., Wu, X. H., Wang, P. X., Wang, S. M., Dong, G. R., Sun, X. J., Zhang, D. E., Lu, Y. C., Zheng, S. H., and Zhao, S. L. (1991b). Paleo-monsoons of China over the last 130,000 years. Science In China (Series B) 34(8), 10071024.Google Scholar
Bard, E., Arnold, M., Fairbanks, R. G., and Hamelin, B. (1993). 230Th–234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35, 191199.Google Scholar
Broecker, W. S. (1995). Chaotic Climate. Scientific American, November, 4450.Google Scholar
Brown, T. A., Nelson, D. E., Mathewes, R. W., Vogel, J. S., and Southon, J. R. (1989). Radiocarbon dating of pollen by accelerator mass spectrome-try. Quaternary Research 32, 205212.Google Scholar
Brown, T. A., Farwell, G. W., Grootes, P. M., and Schmidt, F. H. (1992). Radiocarbon AMS dating of pollen extracted from peat samples. Radiocarbon 34, 550556.Google Scholar
Domros, M., and Peng, G. (1988). “The Climate of China.”; Springer-Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
Dansgaard, W., White, J. W. C., and Johnsen, S. T. (1989). The abrupt termination of the Younger Dryas climatic event. Nature 339, 532533.Google Scholar
Donahue, D. J. (1993). Measurements of radiocarbon ages at the University of Arizona accelerator mass spectrometer facility. Collected Oceanic Works 16(1), 5669.Google Scholar
Department of geography, Shaanxi Normal University (1987). “Geography of Yulin, Shaanxi Province.”; Shaanxi People's Press, Xian.Google Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M., and Taylor, F. W. (1993). A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th Ages of Corals. Science 260, 962968.Google Scholar
El-Moslimany, A. P. (1990). Ecological significance of common nonarbo-real pollen: Examples from drylands of the Middle East. Review of Palaeobotany and Palynology 64, 343350.CrossRefGoogle Scholar
Erdtman, G. (1960). The acetolysis method. Svensk Botanisk Tidskrift 54, 561564.Google Scholar
Fairbanks, R. G. (1990). The age and origin of the Younger Dryas climate event in Greenland ice cores. Paleoceanography 5, 937948.Google Scholar
Gao, Y. X., et al. (1962). Some Problem on East Asia Monsoon (Science Press, Beijing).Google Scholar
Gasse, F., Arnold, M., Fontes, J. C., Fort, M., Gibert, E., Huc, A., Li, B. Y., Li, Y. F., Liu, Q., Melieres, F., Van Campo, E., Wang, F. B., and Zhang, Q. S. (1991). A 13,000-year climate record from western Tibet. Nature 353, 742745.CrossRefGoogle Scholar
Gasse, F., and Fontes, J. Ch. (1992). Climatic change in Northwest Africa during the last deglaciation. In “The Last Deglaciation: Absolute and Radiocarbon Chronologies”; (Bard, E. and Broecker, W. S., Ed.), P295P326. Springer Verlag, Berlin Heidelberg.Google Scholar
Hakansson, S. (1985). A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to post glacial environmental conditions. Quaternary Science Reviews 4, 135146.Google Scholar
Hammarlund, D. (1992). A distinct d13C decline in organic lake sediments at the Pleistocene–Holocene transition in southern Sweden. Boreas 22, 236243.CrossRefGoogle Scholar
Head, M. J., Zhou, W. J., and Zhou, M. F. (1989). Evaluation of 14C ages of organic fractions of paleosols from loess-paleosol sequences near Xian, China. Radiocarbon 31(3), 680690.Google Scholar
Karpuz, N. K., and Jansen, E. (1992). A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes. Paleoceanography 7(4), 499520.CrossRefGoogle Scholar
Kelts, K., Zao, C. K., Lister, G., Hong, G. Z., Niesse, F., and Bonani, G. (1989). Geological fingerprints of climate history: A cooperative study of Qinghai Lake, China. Eclogae Geol. Helv. 82, 167182.Google Scholar
Long, A., Davis, O. K., and Lanois, J. D. (1992). Separation and 14C dating of pure pollen from lake sediments: Nanofossil AMS dating. Radiocarbon 34, 557560.CrossRefGoogle Scholar
Lotter, A. F. (1991). A absolute dating of the late-glacial period in Switzerland using annually laminated sediments. Quaternary Research 35, 321330.Google Scholar
Maher, B. A., and Thompson, R. (1991). Mineral magnetic record of the Chinese loess and paleosols. Geology 19, /1/2.Google Scholar
Mangerud, J., Andersen, S. T., Berglund, B. E., and Donner, J. J. (1974).Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, 109128.Google Scholar
Moore, P. D., and Webb, J. A. (1978). “An Illustrated Guide to Pollen Analysis.”; Hodder and Stoughton, London.Google Scholar
Pennington, W., and Bonny, A. P. (1970). Absolute pollen diagrams from the British late-glacial. Nature (London) 226, 871872.Google Scholar
Porter, S. C., and An, Z. S. (1995). Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.CrossRefGoogle Scholar
Prell, W. L., Kutzbach, J. E. (1987). Monsoon variability over the past 150,000 years J. Geophys. Res. 92 D7, 84118426.CrossRefGoogle Scholar
Rozanski, K., Goslar, T., Dulinski, M., Kuc, T., Pazdur, M. F., and Walanus, A. (1992). The late Glacial-Holocene transition in central Europe derived from isotope studies of laminated sediments from Lake Gosciaz Poland. In “The Last Deglaciation: Absolute and Radiocarbon Chronologies”; (Bard, E. and Broecker, W. S. Ed.), P69P80. Springer Verlag, Berlin Heidelberg.Google Scholar
Stuiver, M., and Reimer, P. J. (1993). Extended 14C data base and revised Calib 3.0 14C age Calib 3.0 14C age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Sun, J. M. (1994). “Environmental Change of the Desert–Loess Transition Belt of North China.”; Unpublished Ph.D. dissertation, Institute of Geology, Beijing, China.Google Scholar
Sun, X. J., Du, N. Q., Weng, C. Y., Lin, R. F., and Wei, K. Q. (1994). Paleovegetation and paleoenvironment of Nanaisi lake, Xinjiang, N. W. China during the last 14,000 years. Quaternary Sciences 3, 239248.Google Scholar
Tang, M. C., Shen, Z. B., and Chen, Y. Y. (1979). The average characteristics of the Plateau monsoon climate. Acta Geographica Sinica 34(1), 3342.Google Scholar
Taylor, K. C., Lamorey, G. W., Doyle, G. A., Alley, R. B., Grootes, P. M., Mayewski, P. A., White, J. W. C., and Barlow, L. K. (1993). The “flickering switch”; of late Pleistocene climate change. Nature 361, 432436.Google Scholar
Wang, S. M., Ji, L., Yang., X D., Xue, B., Ma, Y., and Hu, S. Y. (1994). The record of Younger Dryas event from sediment in Zalairoer Lake, Inner Mongolia. Chinese Science Bulletin 39(4), 348351.Google Scholar
Wu, X. H., An, Z. S., Wang, S. M., Liu, X. D., Li, X. Q., Zhou, W. J., Liu, J. F., Porter, S. C., and Kutzbach, J. E. (1994). The temporal and spatial variation of East Asian summer monsoon in Holocene Optimum in China. Quaternary Science 1, 2437.Google Scholar
Wu, Z. Y. (1980). “Vegetation of China.”; Science Press, Beijing.Google Scholar
Xiao, J. L., Porter, S. C., An, Z. S., Kumai, H., and Yoshikawa, S. (1995). Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr. Quaternary Research 43, 2229.CrossRefGoogle Scholar
Zhang, J. C., and Lin, Z. G. (1992). “Climate of China.”; Wiley, New York.Google Scholar
Zhou, W. J., An, Z. S., Lin, B. H., Xiao, J. L., Zhang, J. Z., Xie, J., Zhou, M. F., Porter, S. C., Head, M. J., and Donahue, D. J. (1992). Chronology of the Baxie loess profile and the history of monsoon climates in China between 17,000 and 6000 years B.P. Radiocarbon 34, 818825.Google Scholar
Zhou, W. J., Head, M. J., and Kaihola, L. (1994). Small sample dating in China. Radiocarbon 36, 4749.CrossRefGoogle Scholar
Zhou, W. J., Zhou, M. F., and Head, M. J. (1990). 14C chronology of Bei Zhuang Cun sedimentation sequences since 30,000 years B. P. Chinese Science Bulletin 35(7), 567572.Google Scholar
Zhou, W. J., and Head, M. J. (1990). Discussion of the reliability of organisms from paleosol and lacustrine deposits for 14C dating. In “Loess, Quaternary Geology and Global Change”; (Liu, T. S., Ed.), Part II, pp. 5863. Science Press, Beijing. [in Chinese] Google Scholar
Zhou, W. J. (1995). “Monsoon Climate Change in the Environmentally Sensitive Zone of Inland China in the Last 13,000 Years and Its 14C Chronology.”; Unpublished Ph.D. dissertation, Northwest University, Xian, China. Google Scholar