Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T08:40:54.103Z Has data issue: false hasContentIssue false

Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago

Published online by Cambridge University Press:  20 January 2017

Alex Chepstow-Lusty*
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard Melbourne, FL 32901, USA Institut des Sciences de l'Evolution, Université Montpellier II, (UMR CNRS 5554), Paléoenvironnements, Montpellier Cedex 05, France
Mark B. Bush
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard Melbourne, FL 32901, USA
Michael R. Frogley
Affiliation:
Department of Geography, Centre for Environmental Research, University of Sussex, Falmer, Brighton BN1 9QJ, UK
Paul A. Baker
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, NC 27708-0227, USA Nicholas School of the Environment, Duke University, Durham, NC 27708-0227, USA
Sherilyn C. Fritz
Affiliation:
Department of Geosciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0340, USA School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0340, USA
James Aronson
Affiliation:
CEFE/CNRS (U.P.R. 9056), 34293 Montpellier Cedex 05, France
*
*Corresponding author. Institut des Sciences de l'Evolution, Université Montpellier II, (UMR CNRS 5554), Paléoenvironnements, Case 61, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France.E-mail address:ajc14@cus.cam.ac.uk (A. Chepstow-Lusty).

Abstract

A 90,000-yr record of environmental change before 18,000 cal yr B.P. has been constructed using pollen analyses from a sediment core obtained from Salar de Uyuni (3653 m above sea level) on the Bolivian Altiplano. The sequence consists of alternating mud and salt, which reflect shifts between wet and dry periods. Low abundances of aquatic species between 108,000 and 50,000 yr ago (such as Myriophyllum and Isoëtes) and marked fluctuations in Pediastrum suggest generally dry conditions dominated by saltpans. Between 50,000 yr ago and 36,000 cal yr B.P., lacustrine sediments become increasingly dominant. The transition to the formation of paleolake “Minchin” begins with marked rises in Isoëtes and Myriophyllum, suggesting a lake of moderate depth. Similarly, between 36,000 and 26,000 cal yr B.P., the transition to paleolake Tauca is also initiated by rises in Isoëtes and Myriophyllum; the sustained presence of Isoëtes indicates the development of flooded littoral communities associated with a lake maintained at a higher water level. Polylepis tarapacana-dominated communities were probably an important component of the Altiplano terrestrial vegetation during much of the Last Glacial Maximum (LGM) and previous wet phases.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001a). Tropical climate changes at millennial and orbital time scales in the Bolivian Altiplano. Nature 409, 698701.CrossRefGoogle Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., (2001b). The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.Google Scholar
Baker, P., Bush, M., Fritz, S., Rigsby, C., Seltzer, G., Silman, M., (2003). Last glacial maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia): comment. Geology e27, .Google Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N., Cabioch, G., (1998). Radiocarbon calibration by means of mass spectrometric 230TH/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40, 10851092.CrossRefGoogle Scholar
Bard, E., Rostek, F., Turon, J.-L., Gendreau, S., (2000). Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 13211324.Google Scholar
Berglund, B.E., Ralska-Jasiewiczowa, M., (1986). Pollen analysis and pollen diagrams. Berglund, B.E., Handbook of Holocene Palaeoecology and Palaeohydrology John Wiley & Sons, Chichester., 455484.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., Rylander, K.A., (2000). A 22,000-yr record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, 15421545.CrossRefGoogle Scholar
Bills, B.G., de Silva, S.L., Currey, D.R., Emenger, R.S., Lillquist, K.D., Donnellan, A., Worden, B., (1994). Hydro-isostatic deflection and tectonic tilting in the central Andes: initial results of a GPS survey of Lake Minchin shorelines. Geophysical Research Letters 21, 293296.CrossRefGoogle Scholar
Blodgett, T.A., Lenters, J.D., Isacks, B.L., (1997). Constraints on the origin of Paleolake expansions in the central Andes. Earth Interactions 1, 1 128.(http://EarthInteractions.org).2.3.CO;2>CrossRefGoogle Scholar
Bobst, A.L., Lowenstein, T.K., Jordan, T.E., Godfrey, L.V., Ku, T.-L., Luo, S., (2001). A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 173, 2142.Google Scholar
Bush, M.B., Miller, M.C., de Oliveira, P.E., Colinvaux, P.A., (2002). Orbital forcing signal in sediments of two Amazonian lakes. Journal of Paleolimnology 27, 341352.Google Scholar
Clayton, J.D., Clapperton, C.M., (1997). Broad synchrony of a Late-glacial glacier advance and the highstand of palaeolake Tauca in the Bolivian Altiplano. Journal of Quaternary Science 12, 169182.3.0.CO;2-S>CrossRefGoogle Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., (2001). Late Quaternary climate and hydrology of Tropical South America inferred from isotopic and chemical model of Lake Titicaca, Bolivia and Peru. Quaternary Research 56, 19.Google Scholar
D'Agostino, K., Seltzer, G.O., Baker, P.A., Fritz, S.C., Dunbar, R., (2002). Late-quaternary lowstands of Lake Titicaca (Peru/Bolivia): evidence from high-resolution seismic data. Palaeogeography, Palaeoclimatology, Palaeoecology 179, 97111.CrossRefGoogle Scholar
J., Fjeldså, and Kessler, M. (1996). Conserving the biological diversity of Polylepis woodlands of the highlands of Peru and Bolivia: a contribution to sustainable natural resource management in the Andes.Technical Report, Nordic Foundation for Development and Ecology.Copenhagen, , Denmark., .Google Scholar
Fornari, M., Risacher, F., Féraud, G., (2001). Dating paleolakes in the central Altiplano of Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology 172, 269282.Google Scholar
Fritz, S.C., Metcalfe, S.E., Dean, W., (2001). Holocene climate patterns in the Americas inferred from paleolimnological records. Markgraf, V., Interhemispheric Climate Linkage Academic Press, San Diego, CA., 241263.Google Scholar
Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., (2004). Hydrological variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research 61, 95104.Google Scholar
Garreaud, R.D., (2000). Intraseasonal variability of moisture and rainfall over the South American Altiplano. Monthly Weather Review 128, 33373346.Google Scholar
Garreaud, R.D., Vuile, M., Clement, A., (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 522.Google Scholar
Heusser, C.J., (1971). Pollen and spores of Chile. Modern types of the Pteridophyta, Gymnospermae and Angiospermae University of Arizona Press, Tucson.Google Scholar
Hooghiemstra, H. (1984). Vegetational and climatic history of the high plain of Bogota, Colombia: a continuous record of the last 3.5 Million years. Dissertationes Botanicae Band 79 , J. Cramer, , Berlin-Stuttgart., .Google Scholar
Hostetler, S.W., Mix, A., (1999). Reassessment of ice-age cooling of the tropical ocean and atmosphere. Nature 399, 673676.Google Scholar
Hutchinson, G.G., (1967). A treatise on limnology. Introduction to Lake Biology and the Limnoplankton vol. 2, John Wiley & Sons, Chichester.Google Scholar
Kessler, M..(1995a). Polylepis-Wälder Boliviens: Taxa, Ökologie, Verbreitung und Geschichte. Dissertationes Botanicæ Band 246.J. Cramer, , Berlin-Stuttgart., .Google Scholar
Kessler, M., (1995b). Present and potential distribution of Polylepis (Rosaceae) forests in Bolivia. Churchill, S.P., Balslev, H., Forero, E., Luteyn, J.L., Biodiversity and Conservation of Neotropical Montane Forests The New York Botanic Garden, New York., 281294.Google Scholar
Klein, A.G., Seltzer, G.O., Isacks, B.C., (1999). Modern and last local glacial maximum snowlines in the central Andes of Peru, Bolivia and northern Chile. Quaternary Science Reviews 18, 6384.Google Scholar
Ku, T.-L., (2000). Uranium series methods. Noller, J.M., Sowers, J.S., Lettis, W.R., Quaternary Geochronology: Methods and Applications American Geophysical Union, Washington, DC., 101114.Google Scholar
Kull, C.M., Grosjean, M., (1998). Albedo changes, Milankovitch forcing, and late Quaternary climate changes in the central Andes. Climate Dynamics 14, 871881.CrossRefGoogle Scholar
Mix, A.C., Morey, A.E., Pisias, N.G., Hostetler, S.W., (1999). Foraminiferal faunal estimates of paleotemperature circumventing the no-analog problem yields cool ice age tropics. Paleoceanography 14, 350359.CrossRefGoogle Scholar
Mourguiart, P., Ledru, M.-P., (2003). Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 31, 3 195198.Google Scholar
Mourguiart, P., Correge, T., Wirrmann, D., Argollo, J., Montenegro, M.E., Pourchet, M., Carbonel, P., (1998). Holocene palaeohydrology of Lake Titicaca estimated from an ostracod-based transfer function. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 5172.CrossRefGoogle Scholar
Paduano, G., Bush, M., Baker, P., Fritz, S., Seltzer, G., (2003). The deglaciation of Lake Titicaca (Peru/Bolivia): a vegetation and fire history. Paleogeography, Paleoclimatology, Paleoecology 194, 259279.Google Scholar
Salgado-Laboriau, M.L., (1979). Modern pollen deposition in the Venezuelan Andes. Grana 18, 5368.Google Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R.B., (2002). Early warming of tropical South America at the last glacial–interglacial transition. Science 296, 16851686.Google Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis. Pollen and Spores 13, 615621.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G., Hugen, K., Kromer, B., McCormack, F.G., Plicht, J.V.D., Spurk, M., (1998). INTCAL98 radiocarbon age calibration 24,000 cal BP. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., (1998). A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.Google Scholar
van der Hammen, T., González, E., (1960). Upper Pleistocene and Holocene climate and vegetation of the Sabana de Bogota (Colombia, South America). Leidse Geologische Mededelingen 25, 261315.Google Scholar
Vuille, M., Bradley, R.S., Keimig, F., (2000). Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 105, 12 447460.Google Scholar
Wirrmann, D., Ybert, J.-P., Mourguiart, P., (1992). A 20,000 years paleohydrological record from Lake Titicaca. Dejoux, C., Iltis, A., Lake Titicaca: A Synthesis of Limnological Knowledge Kluwer Academic Press, Boston., 4048.CrossRefGoogle Scholar
Zhou, J., Lau, K.-M., (1998). Does a monsoon climate exist over South America?. Journal of Climate 11, 10201040.Google Scholar