Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T11:18:35.694Z Has data issue: false hasContentIssue false

Younger Dryas to mid-Holocene environmental history of the lowlands of NW Transylvania, Romania

Published online by Cambridge University Press:  20 January 2017

Angelica Feurdean*
Affiliation:
School of Geography, Centre for the Environment, University of Oxford, South Parks Road, OX1 3QY, Oxford, England
Volker Mosbrugger
Affiliation:
Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt, Germany
Bogdan P. Onac
Affiliation:
Department of Geology, University of South Florida, 4202 E. Fowler Ave., SCA 528, Tampa, FL 33620, USA Quaternary Research Group, “Babes-Bolyai” University Cluj and “Emil Racovita” Institute of Speleology, Clinicilor 5, 400006, Cluj, Romania
Victor Polyak
Affiliation:
Earth and Planetary Sciences, University of New Mexico, 200 Yale Blvd., Northrop Hall, Albuquerque, NM 87131, USA
Daniel Veres
Affiliation:
Quaternary Research Group, “Babes-Bolyai” University Cluj and “Emil Racovita” Institute of Speleology, Clinicilor 5, 400006, Cluj, Romania Department of Physical Geography and Quaternary Geology, Stockholm University, SE-10691 Stockholm, Sweden
*
*Corresponding author.E-mail addresses:angelica.feurdean@ouce.ox.ac.uk, angelica.feurdean@gmail.com (A. Feurdean).

Abstract

Pollen, micro-charcoal and total carbon analyses on sediments from the Turbuta palaeolake, in the Transylvanian Basin of NW Romania, reveal Younger Dryas to mid-Holocene environmental changes. The chronostratigraphy relies on AMS 14C measurements on organic matter and U/Th TIMS datings of snail shells. Results indicate the presence of Pinus and Betula open woodlands with small populations of Picea, Ulmus, Alnus and Salix before 12,000 cal yr BP. A fairly abrupt replacement of Pinus and Betula by Ulmus-dominated woodlands at ca. 11,900 cal. yr BP likely represents competition effects of vegetation driven by climate warming at the onset of the Holocene. By 11,000 cal yr BP, the woodlands were increasingly diverse and dense with the expansion of Quercus, Fraxinus and Tilia, the establishment of Corylus and the decline of upland herbaceous and shrubs taxa. The marked expansion of Quercus accompanied by Tilia between 10,500 and 8000 cal yr BP could be the result of low effective moisture associated with both low elevation of the site and with regional change towards a drier climate. At 10,000 cal yr BP, Corylus spread across the region, and by 8000 cal yr BP it replaced Quercus as a dominant forest constituent, with only little representation of Picea abies. Carpinus became established around 5500 cal yr BP, but it was only a minor constituent in local woodlands until ca. 5000 cal yr BP. Results from this study also indicate that the woodlands in the lowlands of Turbuta were never closed.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Academia Româna, (2002). România. Mediul si reteaua electrica de transport..Atlas geografic.Ed. Academiei Române, Bucuresti, 136 p.Google Scholar
(2004). Academia Româna, România. Calitatea solurilor si Reteaua electrica de transport.. Atlas geografic. Ed. Academiei Române, Bucureti, 30 p.Google Scholar
Beug, H.J. (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete.. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Björkman, L., Feurdean, A., Cinthio, K., Wohlfarth, B., Possnert, G.(2002). Lateglacial and early Holocene vegetation development in the Gutaiului Mountains, NW Romania.. Quaternary Science Reviews 21, 10391059.Google Scholar
Björkman, L., Feurdean, A., Wohlfarth, B.(2003). Lateglacial and Holocene forest dynamics at Steregoiu in the Gutaiului Mountains, NW Romania.. Review of Palaeobotany and Palynology 124, 79111.Google Scholar
Bodnariuc, A., Bouchette, A., Dedoubat, J.J., Otto, T., Fountugne, M., Jalut, G.(2002). Holocene vegetational history of the Apuseni mountains, central Romania.. Quaternary Science Reviews 21, 14651488.Google Scholar
Bruch, A.A., Pross, J.(1999). Palynomorph extraction from coal.. Jones, T.P., Rowe, N.P. Fossil plants and spores: Modern techniques Geological Society of London, London.2630.Google Scholar
Clichici, O., Ghiurca, V., Dragos, I.(1976). Studiul paleocarpologic al depozitelor cuaternare din sectorul Valea Mare-Turbuta, judetul Salaj.. Studia Universitatis, Babes-Bolyai, Mineralogie 2840.Google Scholar
Clichici, O., Dragos, I., Ghiurca, V.(1979). Asociatia molustelor cuaternare din sectorul Valea Mare-Turbuta judetul Salaj.. Studia Universitatis Babes-Bolyai. Geologia-Geographia 1, 3246.Google Scholar
Dahl, E. (1998). The phytogeography of Northern Europe.. Cambridge University Press, Cambridge.Google Scholar
Diaconeasa, B., Clichici, O., Dragos, I.(1976). Quelques renseignements sporopolliniques concernant le passe de la vegetation Quaternaire de Transylvanie.. Contributii Botanice 193196.Google Scholar
Edwards, R.L., Gallup, C.D., Cheng, H.(2003). Uranium-series dating of marine and lacustrine carbonates.. Bourdon, B., Henderson, G.M., Lundstrom, C.C., Turner, S.P. Uranium-series geochemistry Reviews in Mineralogy and Geochemistry vol. 52, 363405.Google Scholar
Farcas, S., de Beaulieu, J.L., Reille, M., Coldea, G., Diaconeasa, B., Goeury, C., Goslar, T., Jull, T.(1999). First 14C dating of Late Glacial and Holocene pollen sequences from the Romanian Carpathians. Comptes Rendues de l'Académie des Sciences de Paris.. Sciences de la Vie 322, 799807.Google Scholar
Farcas, S., Miclaus, M., Tantau, I.(2004). Correlations between the actual hilly and plain vegetation from Transylvania and recent–sub-recent palynological spectra.. Studii and Cercetari, Biologie, Bistrita 9, 99111.Google Scholar
Farcas, S., Popescu, F., Tantau, I.(2006). Dinamica spatiala si temporala a stejarului, frasinului si carpenului in timpul Tardi-si Postglaciarului pe teritoriul României.. Presa Universitara Clujeana, Cluj-Napoca.Google Scholar
Feurdean, A.. (2004). Palaeoenvironment in Romania during last 15,000 years.. Ph.D. Thesis Stockholm University, Sweden.,44 pp +4 appendix.Google Scholar
Feurdean, A. (2005). Holocene forest dynamics in northwestern Romania.. The Holocene 13, 435446.Google Scholar
Feurdean, A., Bennike, O.(2004). Late Quaternary palaeoecological and paleoclimatological reconstruction in the Gutaiului Mountains, NW Romania.. Journal of Quaternary Science 19, 809827.Google Scholar
Feurdean, A., Wohlfarth, B., Björkman, L., Tantau, I., Bennike, O., Willis, K.J., Farcas, S., Robertsson, A.M.(2007). The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania.. Review of Palaeobotany and Palynology 145, 305320.Google Scholar
Feurdean, A., Klotz, S., Mosbrugger, V., Wohlfarth, B.submitted for publication. Quantitative reconstruction of the Lateglacial climate variability in NW Romania–A pollen-based approach..Google Scholar
Feurdean, A., Klotz, S., Wohlfarth, V., Mosbrugger, B., in press. Pollen-based quantitative reconstruction of Holocene climate variability in NW Romania.. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Goodfriend, G.A. (1992). The use of land snail shells in paleoenvironmental reconstruction.. Quaternary Science Reviews 11, 665685.Google Scholar
Grimm, E.C. (1987). CONISS: A FORTAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum squares.. Computer Geosciences 13, 1337.Google Scholar
Grimm, E.C. (1992). Tilia and Tilia-graph: Pollen spreadsheet and graphics programs. Programs and Abstracts.. 8th International Palynological Congress Ax-en-Provence, France.52.Google Scholar
Grimme, J.P., Hodgson, J.G., Hunt, R.(1986). Comparative plant ecology.. Unwin Hyman, London.Google Scholar
Magyari, E. (2002). Climatic versus human modification of the Late Quaternary vegetation in Eastern Hungary.. PhD Thesis, University of Debrecen, Hungary.Google Scholar
Magyari, E.K., Buczkó, K., Jakab, G., Braun, M., Szántó, Zs., Molnár, M., Pál, Z., Karátson, D.(2006). Holocene palaeohydrology and environmental history in the South Harghita Mountains, Romania.. Földtani Közlöny 136/2, .Google Scholar
Maxim, Z. (1999). Neo-Eneoliticul din Transilvania.. Date arheologice si matematico-statistice, Cluj.Google Scholar
Moore, P.D., Web, J.A., Colllinson, M.E.(1991). Pollen analysis.. Blackwell Science Oxford, Oxford.Google Scholar
Meyers, P.A., Teranes, J.L.(2001). Sediment organic matter.. Last, W.M., Smol, J.P. Tracking environmental change using lake sediments Physical and Geochemical methods vol 2, Kluwer Academic Publishers, Dordrecht.239269.Google Scholar
Mezsaros, N., Moisescu, V.(1991). Bref apercu des unites litostraphiques du paleogene dans le Nord-Quest de la Transylvanie (region Cluj-Huedin).. Bulletin d'Information des Geologues du Bassin de Paris 28, 3139.Google Scholar
Onac, B.P., Björkman, L., Björk, S., Clichici, O., Tamas, T., Peate, D., Wohlfart, B.(2001). The first dated Eemian lacustrine deposit in Romania.. Quaternary Research 56, 6265.Google Scholar
Piggot, C.D. (1991). Tilia cordata Miller.. Journal of Ecology 79, 11471207.Google Scholar
Pop, E. (1957). Analize de polen in regiuni de campie.. Buletin Stiintific, Sectia de Biologie si Stiinte Agricole, Seria Botanica, Bucuresti 9, 532.Google Scholar
Rösch, M., Fischer, E.("sch and Fischer, 2000). A radiocarbon dated Holocene pollen profile from the Banat Mountains (southwestern Carpathians, Romania).. Flora 195, 277286.Google Scholar
Reimer, P. (2004). A new calibration curve for the conversion of radiocarbon ages to calibrated 0–26 cal kry.. Radiocarbon 46, 10291058.Google Scholar
Tallantire, P.A. (2002). The early-Holocene spread of hazel (Corylus avellana L.) in Europe north and west of the Alps: An ecological hypothesis.. The Holocene 12, 8196.Google Scholar
Tantau, I. (2006). Histoire de la végétation tardiglaciaire et holocène dans les Carpates Orientales (Roumanie).. Presa Universitara Clujeana, Cluj-Napoca.Google Scholar
Tantau, I., Reille, M., de Beaulieu, J.L., Farcas, S., Goslar, T., Paterne, M.(2003). Vegetation history in the eastern Romanian Carpathians: Pollen analysis of two sequences from the Mohos crater.. Vegetation History and Archaeobotany 12, 113125.Google Scholar
Tantau, I., Reille, M., de Beaulieu, J.L., Farcas, S.(2006). Late Glacial and Holocene vegetation history in the southern part of Transylvania (Romania): pollen analysis of two sequences from Avrig.. Journal of Quaternary Science 21, 4961.Google Scholar
Tinner, W., Conedera, M., Gobert, E., Hubschmid, P., Wehrli, M., Ammann, B.(2000). A palaeoecological attempt to classify fire sensitivity of trees in the Alps.. The Holocene 10, 565574.Google Scholar
Tranquilini, W. (1974). Water relation and alpine timberline.. Ecological studies 19, 473491.Google Scholar
ter Braak, C.J.F., Smilauer, P.(2002). CANOCO reference manual and CanoDraw for windows user's guide.. Microcomputer Power, Ithaca, NY.Google Scholar
Toader, T, Dumitru, I.(2004). Padurile Romaniei–Parcuri nationale si parcuri naturale.. Regia Nationala a Padurilor, Bucuresti.Google Scholar
Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis.. Pollen Spores 13, 615621.Google Scholar
Stuiver, M., Long, A., Kra, R.S.(1993). Calibration issue.. Radiocarbon 35, 1244.Google Scholar
Stuiver, M., P.J., Reimer, and R.W., Reimer (2005). CALIB 5.0.. [WWW program and documentation].Google Scholar
Schnitchen, C., Charman, D.J., Magyari, E., Braun, N., Grigorszky, I., Tothmeresz, B., Molnar, M., Szanto, Z.(2006). Reconstructing hydrological variability from testate amoeba analysis in Carpathian peatlands.. Journal of Paleolimnology 36, 117.Google Scholar
Sykes, M.T., Prentice, I.C., Cramer, W.(1996). A bioclimatic model for the potential distribution of north European tree species under present and future climates.. Journal of Biogeography 23, 203223.Google Scholar
Willis, K.J., Sümegi, P., Braun, M., Tóth, A.(1995). The late Quaternary environmental history of Bátorliget, N.E. Hungary.. Palaeogeography, Palaeoclimatology, Palaeoecology 118, 2547.Google Scholar
Wohlfarth, B., Hannon, G., Feurdean, A., Ghergari, L., Onac, B.P., Possnert, G.(2001). Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (15,000–13,600 cal years BP).. Quaternary Science Reviews 20, 18971914.Google Scholar