Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T16:31:31.076Z Has data issue: false hasContentIssue false

δ13C values of wood and Charcoal Reveal Broad Isotopic ranges at the base of the Food Web

Published online by Cambridge University Press:  05 December 2019

Bente Philippsen*
Affiliation:
Aarhus AMS Centre, Department of Physics and Astronomy and Centre for Urban Network Evolutions (UrbNet), Aarhus University, Denmark Museum Lolland-Falster, Rødbyhavn, Denmark
Jesper Olsen
Affiliation:
Aarhus AMS Centre, Department of Physics and Astronomy and Centre for Urban Network Evolutions (UrbNet), Aarhus University, Denmark
Søren A Sørensen
Affiliation:
Museum Lolland-Falster, Rødbyhavn, Denmark
Bjørnar Måge
Affiliation:
Museum Lolland-Falster, Rødbyhavn, Denmark
*
*Corresponding author. Email: bphilipp@phys.au.dk.

Abstract

The aim of this study is to investigate the range, the degree of variability, and a possible time or species dependence of wood and charcoal δ13C values within one small study area. To achieve this, we used δ13C and 14C determinations of more than 400 archaeological samples from a ca. 300 ha area in Denmark, spanning 5000 years and covering several different species. The δ13C values of the wood and charcoal range from −32.8‰ to −21.2‰. We found no time-dependence of wood and charcoal δ13C values, neither in general nor within one species. The mean δ13C of all wood samples is −28.5‰, while the means of individual species range from −30.6‰ to −26.3‰. The mean of all charcoal samples is −25.7‰, with the means of individual species ranging from −28.1‰ to −24.3‰. The wood δ13C values can be used to infer the possible range of plant δ13C values, which otherwise are not available. They imply that a high degree of variability can be expected at the base of the food chain. This is relevant for palaeodietary studies that rely on the measurement of baseline isotope values.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Ascough, PL, Bird, MI, Wormald, P, Snape, CE, Apperley, D. 2008. Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics. Geochimica et Cosmochimica Acta 72:60906102.CrossRefGoogle Scholar
Beuning, KRM, Scott, JE. 2002. Effects of charring on the carbon isotopic composition of grass (Poaceae) epidermis. Palaeogeography, Palaeoclimatology, Palaeoecology 177:169181.CrossRefGoogle Scholar
Bogaard, A, Fraser, R, Heaton, THE, Wallace, M, Vaiglova, P, Charles, M, Jones, G, Evershed, RP, Styring, AK, Andersen, NH, Arbogast, R-M, Bartosiewicz, L, Gardeisen, A, Kanstrup, M, Maier, U, Marinova, E, Ninov, L, Schäfer, M, Stephan, E. 2013. Crop manuring and intensive land management by Europe’s first farmers, Proceedings of the National Academy of Sciences 110:1258912594.CrossRefGoogle ScholarPubMed
Brinkkemper, P, Braadbaart, F, van Os, B, van Hoesel, A, van Brussel, AAN, Fernandes, R. 2018. Effectiveness of different pre-treatments in recovering pre-burial isotopic ratios of charred plants. Rapid Communications in Mass Spectrometry 32:251261.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Caracuta, V, Weinstein-Evron, M, Yeshurun, R, Kaufman, D, Tsatskin, A, Boaretto, E. 2016. Charred wood remains in the Natufian sequence of el-Wad terrace (Israel): New insights into the climatic, environmental and cultural changes at the end of the Pleistocene. Quaternary Science Reviews 131:2032.CrossRefGoogle Scholar
Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3(2–3):5392.CrossRefGoogle Scholar
DeNiro, MJ, Hastorf, CA. 1985. Alteration of 15N/14N and 13C/12C ratios of plant matter during the initial stages of diagenesis: studies utilizing archaeological specimens from Peru. Geochimica et Cosmochimica Acta 49(1):97115.CrossRefGoogle Scholar
Drucker, DG, Bridault, A, Hobson, KA, Szuma, E, Bocherens, H. 2008. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology 266(1):6982.CrossRefGoogle Scholar
Ferrio, JP, Araus, JL, Buxó, R, Voltas, J, Bort, J. 2005. Water management practices and climate in ancient agriculture: inferences from the stable isotope composition of archaeobotanical remains. Vegetation History and Archaeobotany 14(4):510517.CrossRefGoogle Scholar
Ferrio, JP, Alonso, N, López-Melción, J, Araus, J, Voltas, J. 2006. Carbon isotope composition of fossil charcoal reveals aridity changes in the NW Mediterranean Basin. Global Change Biology 12(7):12531266.CrossRefGoogle Scholar
Fiorentino, G, Caracuta, V, Casiello, G, Longobardi, F, Sacco, A. 2012. Studying ancient crop provenance: implications from δ13C and δ15N values of charred barley in a Middle Bronze Age silo at Ebla (NW Syria). Rapid Communications in Mass Spectrometry 26:327335.CrossRefGoogle Scholar
Fiorentino, G, Ferrio, JP, Bogaard, A, Araus, J, Riehl, S. 2014. Stable isotopes in archaeobotanical research. Vegetation History and Archaeobotany 24(1):215227.CrossRefGoogle Scholar
Francey, RJ, Farquhar, GD. 1982. An explanation of 13C/12C variations in tree rings. Nature 297(5861):2831.CrossRefGoogle Scholar
Gagen, M, Zorita, E, McCarroll, D, Young, GHF, Grudd, H, Jalkanen, R, Loader, NJ, Robertson, I, Kirchhefer, A. 2011. Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophysical Research Letters 38(5):L05701.CrossRefGoogle Scholar
Gron, KL, Gröcke, DR, Larsson, M, Sørensen, L, Larsson, L, Rowley-Conwy, P, Church, MJ. 2017. Nitrogen isotope evidence for manuring of early Neolithic Funnel Beaker Culture cereals from Stensborg, Sweden. Journal of Archaeological Science: Reports 14:575579.CrossRefGoogle Scholar
Hafner, P, Robertson, I, McCarroll, D, Loader, NJ, Gagen, M, Bale, RJ, Jungner, H, Sonninen, E, Hilasvuori, E, Levanic, T. 2011. Climate signals in the ring widths and stable carbon, hydrogen and oxygen isotopic composition of Larix decidua growing at the forest limit in the southeastern European Alps. Trees – Structure and Function 25(6):11411154.CrossRefGoogle Scholar
Hastorf, CA, DeNiro, MJ. 1985. Reconstruction of prehistoric plant production and cooking practices by a new isotopic method. Nature 315:489491.CrossRefGoogle Scholar
Heaton, THE. 1999. Spatial, species, and temporal variations in the 13C/12C Ratios of C3 plants: implications for palaeodiet studies. Journal of Archaeological Science 26(6):637649.CrossRefGoogle Scholar
Hemming, DI, Switsur, VR, Waterhouse, JS, Heaton, THE, Carter, AHC. 1998. Climate variation and the stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris . Tellus B: Chemical and Physical Meteorology 50(1):2533.CrossRefGoogle Scholar
Kanstrup, M, Holst, MK, Jensen, PM, Thomsen, IK, Christensen, BT. 2014. Searching for long-term trends in prehistoric manuring practice. δ15N analyses of charred cereal grains from the 4th to the 1st millennium BC, Journal of Archaeological Science 51:115125.CrossRefGoogle Scholar
Leavitt, SW, Donahue, DJ, Long, A. 1982. Charcoal production from wood and cellulose: implications to radiocarbon dates and accelerator target production. Radiocarbon 24(1):2735.CrossRefGoogle Scholar
Lev-Yadun, S, Lucas, DS, Weinstein-Evron, M. 2010. Modeling the demands for wood by the inhabitants of Masada and for the Roman siege. Journal of Arid Environments 74(7):777785.CrossRefGoogle Scholar
Li, M, Zhu, J. 2011. Variation of δ13C of wood and foliage with canopy height differs between evergreen and deciduous species in a temperate forest. Plant Ecology 212(4):543551.CrossRefGoogle Scholar
Lightfoot, E, Stevens, RE. 2012. Stable isotope investigations of charred barley (Hordeum vulgare) and wheat (Triticum spelta) grains from Danebury Hillfort: implications for palaeodietary reconstructions, Journal of Archaeological Science 39:656662.CrossRefGoogle Scholar
Loader, NJ, Santillo, PM, Woodman-Ralph, JP, Rolfe, JE, Hall, MA, Gagen, M, Robertson, I, Wilson, R, Froyd, CA, McCarroll, D. 2008. Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chemical Geology 252(1–2):6271.CrossRefGoogle Scholar
Marino, BD, DeNiro, MJ. 1987. Isotopic analysis of archaeobotanicals to reconstruct past climates: Effects of activities associated with food preparation on carbon, hydrogen and oxygen isotope ratios of plant cellulose. Journal of Archaeological Science 14(5):537548.CrossRefGoogle Scholar
McCarroll, D, Loader, NJ. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23(7):771801.CrossRefGoogle Scholar
McDowell, NG, Bond, BJ, Dickman, LT, Ryan, MG, Whitehead, D. 2011. Relationships between tree height and carbon isotope discrimination. In: Meinzer, FC, Lachenbruch, B, Dawson, T, editors. Size- and age-related changes in tree structure and function: Springer. p 255286.CrossRefGoogle Scholar
Medina, E, Minchin, PEH. 1980. Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 45(3):377378.CrossRefGoogle ScholarPubMed
Metcalfe, JZ, Mead, JI. 2019. Do uncharred plants preserve original carbon and nitrogen isotope compositions? Journal of Archaeological Method and Theory 26(2):844872.CrossRefGoogle Scholar
Mischel, M, Esper, J, Keppler, F, Greule, M, Werner, W. 2015. δ2H, δ13C and δ18O from whole wood, α-cellulose and lignin methoxyl groups in Pinus sylvestris: a multi-parameter approach. Isotopes in Environmental and Health Studies 51(4):553568.CrossRefGoogle Scholar
Noe-Nygård, N, Hede, MU. 2006. The first appearance of cattle in Denmark occurred 6000 years ago: an effect of cultural or climate and environmental changes. Geografiska Annaler, Series A Physical Geography 88(2): 8795.CrossRefGoogle Scholar
Olsen, J, Tikhomirov, D, Grosen, C, Heinemeier, J, Klein, M. 2016. Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59:905913.CrossRefGoogle Scholar
Park, R, Epstein, S. 1960. Carbon isotope fractionation during photosynthesis. Geochimica et Cosmochimica Acta 21(1):110126.CrossRefGoogle Scholar
Philippsen, B. 2018. Reservoir effects in a Stone Age Fjord on Lolland, Denmark. Radiocarbon 60(2):653665.CrossRefGoogle Scholar
Poole, I, Bergen, PFv. 2006. Physiognomic and chemical characters in wood as palaeoclimate proxies. Plant Ecology 182(1):175195.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Revelle, R, Suess, HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus IX:1827.Google Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments & Methods in Physics Research B 259:293302.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1987. Tree cellulose 13C/12C isotope ratios and climatic change. Nature 328(6125):5860.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon Concentration in Modern Wood. Science 122(3166):415417.CrossRefGoogle Scholar
Sørensen, SA. 2016. Denmark’s largest Stone Age excavation. Mesolithic Miscellany 24(2):310.Google Scholar
Styring, A, Ater, M, Hmimsa, Y, Fraser, R, Miller, H, Neef, R, Pearson, JA, Bogaard, A. 2016. Disentangling the effect of farming practice from aridity on crop stable isotope values: A present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. The Anthropocene Review 3:222.CrossRefGoogle Scholar
Styring, AK, Charles, M, Fantone, F, Hald, MM, McMahon, A, Meadow, RH, Nicholls, GK, Patel, AK, Pitre, MC, Smith, A, Soltysiak, A, Stein, G, Weber, JA, Weiss, H, Bogaard, A. 2017. Isotope evidence for agricultural extensification reveals how the world’s first cities were fed. Nature Plants 3:111.CrossRefGoogle ScholarPubMed
Taylor, AM, Brooks, JR, Lachenbruch, B, Morrell, JJ, Voelker, S. 2008. Correlation of carbon isotope ratios in the cellulose and wood extractives of Douglas-fir. Dendrochronologia 26:1251–31.CrossRefGoogle Scholar
Turekian, VC, Macko, S, Ballentine, D, Swap, R, Garstang, M. 1998. Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: Laboratory studies. Chemical Geology 152(1–2):181192.CrossRefGoogle Scholar
Van de Water, PK, Leavitt, SW, Betancourt, JL. 2002. Leaf δ13C variability with elevation, slope aspect, and precipitation in the Southwest United States. Oecologia 132(3):332343.CrossRefGoogle ScholarPubMed
van der Merwe, NJ, Medina, E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18(3):249259.CrossRefGoogle Scholar
Verheyden, A, Roggeman, M, Bouillon, S, Elskens, M, Beeckman, H, Koedam, N. 2005. Comparison between δ13C of α-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: Implications for dendrochemistry. Chemical Geology 219(1):275282.CrossRefGoogle Scholar
Vignola, C, Masi, A, Balossi Restelli, F, Frangipane, M, Marzaioli, F, Passariello, I, Rubino, M, Terrasi, F, Sadori, L. 2018. δ13C values in archaeological 14C-AMS dated charcoals: Assessing mid-Holocene climate fluctuations and human response from a high-resolution isotope record (Arslantepe, Turkey). Rapid Communications in Mass Spectrometry 32:11491162.CrossRefGoogle Scholar
Vogel, JC. 1978. Recycling of CO2 in a forest environment. Oecologia Plantarum 13:8994.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2):289293.CrossRefGoogle Scholar
Wickman, FE. 1952. Variations in the relative abundance of the carbon isotopes in plants. Geochimica et Cosmochimica Acta 2(4):243254.CrossRefGoogle Scholar
Young, GHF, McCarroll, D, Loader, NJ, Kirchhefer, AJ. 2010. A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene 20(3):315324.CrossRefGoogle Scholar
Young, GHF, Bale, RJ, Loader, NJ, McCarroll, D, Nayling, N, Vousden, N. 2012a. Central England temperature since AD 1850: the potential of stable carbon isotopes in British oak trees to reconstruct past summer temperatures. Journal of Quaternary Science 27(6):606614.CrossRefGoogle Scholar
Young, GHF, McCarroll, D, Loader, NJ, Gagen, MH, Kirchhefer, AJ, Demmler, JC. 2012b. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Climate Dynamics 39(1–2):495507.CrossRefGoogle Scholar
Supplementary material: File

Philippsen et al. supplementary material

Philippsen et al. supplementary material 1

Download Philippsen et al. supplementary material(File)
File 693 KB
Supplementary material: File

Philippsen et al. supplementary material

Philippsen et al. supplementary material 2

Download Philippsen et al. supplementary material(File)
File 133.2 KB
Supplementary material: File

Philippsen et al. supplementary material

Philippsen et al. supplementary material 3

Download Philippsen et al. supplementary material(File)
File 14.4 KB