Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T07:11:32.190Z Has data issue: false hasContentIssue false

Δ14C and δ13C in Annual Tree-Ring Samples from Sequoiadendron Giganteum, AD 998–1510: Solar Cycles and Climate

Published online by Cambridge University Press:  22 April 2019

C J Eastoe*
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (retired)
C S Tucek
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (retired)
R Touchan
Affiliation:
Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
*
*Corresponding author. Email: eastoe@email.arizona.edu.

Abstract

Time series of annual Δ14C and δ13C in tree rings of Sequoiadendron giganteum, AD 998–1510, are similar in form. The Δ14C series completes, with data of Stuiver and Braziunas (1993), a 957-yr time-series. Discrete Fourier transformation of detrended Δ14C reveals periods of 126, 91, 56, 17.6, 13.6, 10.4, and 7.1 yr. Non-random differences exist between decadal averages of the Sequoiadendron Δ14C data and data of Stuiver and Becker (1993). Periods of 7–17 yr may correspond to Schwabe or related climatic cycles; these have 10–17-yr periods and amplitudes < 6‰ (AD 1100–1250), and periods near 7 yr with amplitudes up to 10‰ (AD 1380–1420). Abrupt increases in Δ14C are mainly less than 5‰, and do not constitute convincing evidence of increased 14C production from supernovae or solar proton events. The δ13C time-series is likely to reflect climate change, and for centennial periodicity lags behind Δ14C by 20–40 yr (centennial time-scale) and 25–50 yr (millennial). Phase-shifts between solar luminosity and surface Δ14C are 125–175 yr and 20 yr for millennial and centennial cycles, respectively. The study suggests that strongest climate effects may therefore follow peak luminosity by 125–175 yr for millennial cycles and 20–40 yr for centennial cycles.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrose, AR, Sillett, SC, Dawson, TE. 2009. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environment 32(7):743757.CrossRefGoogle ScholarPubMed
Bard, E, Raisbeck, G, Yiou, F, Jouzel, J. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth and Planetary Science Letters 150(3–4):453462.CrossRefGoogle Scholar
Beer, J, McCracken, K, von Steiger, R. 2012. Cosmogenic radionuclides: theory and applications in the terrestrial and space environments. Berlin (Germany): Springer. doi: 10.1007/978-3-642-14651-0.CrossRefGoogle Scholar
Bolduc, C, Charbonneau, P, Barnabé, R, Bourqui, MS. 2014. A reconstruction of ultraviolet spectral irradiance during the Maunder Minimum. Solar Physics 289(8):28912906. doi: 10.1007/s11207-014-0503-0.CrossRefGoogle Scholar
Carbon Dioxide Information Analysis Center Monthly Atmospheric 13C/12C Isotopic Ratios for 11 SIO Stations. 2010. Berkeley (CA): United States Department of Energy; [accessed 2019 Jan 28]. http://cdiac.ess-dive.lbl.gov/trends/co2/iso-sio/iso-sio.html.Google Scholar
Cernusak, LA, Ubierna, N, Winter, K, Holtum, JAM, Marshall, JD, Farquhar, GD. 2013. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytologist 200:950965.CrossRefGoogle ScholarPubMed
Craig, H. 1954. Carbon-13 variations in sequoia rings and the atmosphere. Science 119(3083):141143.CrossRefGoogle ScholarPubMed
Damon, PE, Eastoe, CJ, Hughes, MK, Kalin, RM, Long, A, Peristykh, AN. 1998. Secular variation of Δ14C during the Medieval Solar Maximum: a progress report. In: Mook, WG, van der Plicht, J, editors. Proceedings of the 16th International 14C Conference. Radiocarbon. 40(1):343350.Google Scholar
Damon, PE, Dai, K, Kocharov, GE, Mikheeva, IB, Peristykh, AN. 1995a. Radiocarbon production by the gamma-ray component of supernova explosions. In: Cook, GT, Harkness, DD, Miller, BF, Scott, EM, editors. Proceedings of the 15th International 14C Conference. Radiocarbon 37(2):599604.Google Scholar
Damon, PE, Kocharov, GE, Peristykh, AN, Mikheeva, IB, Dai, K. 1995b. High energy gamma rays from SN1006 AD. Proceedings of the International Cosmic Ray Conference, Rome 2:311314.Google Scholar
Damon, P, Eastoe, CJ, Mikheeva, IB. 1999. The Maunder Minimum: an interlaboratory comparison of Δ14C from AD 1688 to AD 1710. Radiocarbon 41(1):4750.CrossRefGoogle Scholar
Damon, PE, Peristykh, AN. 2000. Radiocarbon calibration and application to geophysics, solar physics, and astrophysics. Radiocarbon 42(1):137150.CrossRefGoogle Scholar
Damon, PE, Peristykh, AN. 2004. Solar and climatic implications of the centennial and millennial periodicities in atmospheric Δ14C variations. American Geophysical Union Geophysical Monograph 141:237249.Google Scholar
Damon, PE, Peristykh, AN. 2005. Solar forcing of global temperature change since AD 1400. Climate Change 68(1):101111.CrossRefGoogle Scholar
Damon, PE, Sonnett, CP. 1991. Solar and terrestrial components of the atmospheric 14C variation spectrum. In: Sonnett, CP, Giampapa, MS, Matthews, MS. editors. The Sun in time. Tucson (AZ): Univ. of Ariz. Press. p. 366388.Google Scholar
Dee, M, Pope, B, Miles, D, Manning, S, Miyake, F. 2017. Supernovae and single-year anomalies in the atmospheric radiocarbon record. Radiocarbon 59(2):293302. doi: 10.1017/RDC.2016.50.CrossRefGoogle Scholar
Diefendorf, AF, Mueller, KE, Wing, SL, Koch, PL, Freeman, KH. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. PNAS 107(13):57385743.CrossRefGoogle ScholarPubMed
Ehleringer, JR, Field, CB, Lin, ZF, Kuo, CY. 1986. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70(4):520526.CrossRefGoogle ScholarPubMed
Eichler, A, Olivier, S, Henderson, K, Laube, A, Beer, J, Papina, T, Gäggeler, HW, Schwikowski, M. 2009. Temperature response in the Altai region lags solar forcing. Geophysical Research Letters 36(1): L01808. doi: 10.1029/2008GL035930.CrossRefGoogle Scholar
Emile-Geay, J, Seager, R, Cane, M, Cook, E, Haug, GH. 2008. Volcanoes and ENSO over the past millennium. Journal of Climate 21(13):31343148.CrossRefGoogle Scholar
Farquhar, GD, Ehleringer, JR, Hubick, KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40(1):503537.CrossRefGoogle Scholar
Farquhar, GD, Richards, RA. 1984. Isotopic composition of plant carbon correlates with water-use efficiency in wheat genotypes. Australian Journal of Plant Physiology 11(6):539552.Google Scholar
Floyd, LE, Tobiska, WK, Cebula, RP. 2002. Solar UV irradiance, its variation, and its relevance to the Earth. Advances in Space Research 29(10):14271440.CrossRefGoogle Scholar
Graumlich, LJ. 1993. A 1000-year record of temperature and precipitation in the Sierra Nevada. Quaternary Research 39(2):249255.CrossRefGoogle Scholar
Güttler, D, Wacker, L, Kromer, B, Friedrich, M, Synal, H-A. 2013. Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD—Progress on high precision AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:459463 CrossRefGoogle Scholar
Helama, S, Fauria, M, Mielikainen, K, Timonen, M, Eronen, M. 2010. Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geological Society of America Bulletin 122(11/12):19811988.CrossRefGoogle Scholar
Houtermans, JC, Suess, HS, Oeschger, H. 1973. Reservoir models and production rate variations of natural radiocarbon. Journal of Geophysical Research 78(12):18971908.CrossRefGoogle Scholar
Hoyt, DV, Schatten, KH. 1997. The role of the Sun in climate change. Oxford (UK): Oxford University Press. 279 p.Google Scholar
Hughes, MK, and Brown, PM. 1992. Drought frequency in central California since 101 B.C. recorded in giant sequoia tree rings. Climate Dynamics 6(3–4):161167.CrossRefGoogle Scholar
Hughes, MK, Touchan, R, Brown, PM. 1996. A multimillennial network of giant sequoia chronologies for dendroclimatology. In: Dean, JS, Meko, DM, Swetnam, TW, editors. Tree rings, environment and humanity. Tucson (AZ): Radiocarbon. p. 225234.Google Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters 41(8):30043010. doi: 10.1002/2014GL059874.CrossRefGoogle Scholar
Kalin, RM, McCormac, FG, Damon, PE, Eastoe, CJ, Long, A. 1995. Intercomparison of high–precision 14C measurements at the University of Arizona Radiocarbon Laboratory. Radiocarbon 37(1):3338.CrossRefGoogle Scholar
Kocharov, GE. 1992. Radiocarbon and astrophysical-geophysical phenomena. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon after four decades. New York (NY): Springer-Verlag. p. 130145.CrossRefGoogle Scholar
Körner, C, Farquhar, GD, Wong, SC. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88(1):3040.CrossRefGoogle ScholarPubMed
Lean, J. 2000. Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophysical Research Letters 27(16):24252428.CrossRefGoogle Scholar
Lean, JL, Hulburt, EO, White, OR, Skumanich, A. 1995. On the solar ultraviolet spectral irradiance during the Maunder Minimum. Global Biogeochemical Cycles 9(2):171182.CrossRefGoogle Scholar
Leavitt, SW. 2010. Tree-ring C-H-O isotope variability and sampling. Science of the Total Environment 408(22):52445253.CrossRefGoogle ScholarPubMed
Leavitt, SW, Long, A. 1982. Evidence for 13C/12C fractionation between tree leaves and wood. Nature 298(5876):742744.CrossRefGoogle Scholar
Leavitt, SW, Long, A. 1991. Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chemical Geology (Isotope Geoscience Section) 87(1):5970.CrossRefGoogle Scholar
Mann, ME, Bradley, RS, Hughes, ML. 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392(6678): 779787.CrossRefGoogle Scholar
Masson-Delmotte, V, Schulz, M, Abe-Ouchi, A, Beer, J, Ganopolski, A, González Rouco, JF, Jansen, E, Lambeck, K, Luterbacher, J, Naish, T, et al. 2013. Information from paleoclimate archives. In: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, and Midgley, PM, editors. Climate Change 2013: the physical science basis. contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press. p. 383464.Google Scholar
McCarroll, D, Loader, NJ. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23(7–8):771801.CrossRefGoogle Scholar
McCormac, F, Baillie, M, Pilcher, J, Kalin, R. 1995. Location-dependent differences in the 14C content of wood. Radiocarbon 37(2):395407.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Higham, TFG, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D,, et al. 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters 25(9):13211324.CrossRefGoogle Scholar
McDowell, NG, Bond, BJ, Dickman, LT, Ryan, MG, Whitehead, D. 2011. Relationships between tree height and carbon isotope discrimination. In: Meinzer, FC, Lachenbruch, B, Dawson, TE, editors. Size- and age-related changes in tree structure and function. New York (NY): Springer. p. 255285.CrossRefGoogle Scholar
Meehl, GA, Arblaster, JM, Matthes, K, Sassi, F, van Loon, H. 2009. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325(5944):11141118.CrossRefGoogle ScholarPubMed
Meijer, HAJ, Dergachev, VA, van der Plicht, J, Renssen, H, Raspopov, OM, van Geel, B. 1999. The role of solar forcing upon climate change. Quaternary Science Reviews 18(3):331338.Google Scholar
Miyahara, H, Masuda, K, Muraki, Y, Kitagawa, H, Nakamura, T. 2006. Variation of solar cyclicity during the Spoerer Minimum. Journal of Geophysical Research 111:A03103. doi: 10.1029/2005JA011016.CrossRefGoogle Scholar
Miyahara, H, Masuda, K, Nagaya, K, Kuwana, K, Muraki, H, Nakamura, T. 2007. Variation of solar activity from the Spoerer to the Maunder minima indicated by radiocarbon content in tree rings. Advances in Space Research 40(7):10601063. doi: 10.1016/j.asr.2006.12.04.CrossRefGoogle Scholar
Miyahara, H, Masuda, K, Furuzawa, H, Menjo, H, Muraki, Y, Kitagawa, H, Nakamura, T. 2004. Variation of the radiocarbon content in tree rings during the Spoerer minimum. Radiocarbon 46(2):965968.CrossRefGoogle Scholar
Miyahara, H, Yokoyama, Y, Masuda, K. 2008. Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity. Earth and Planetary Science Letters 272(1–2):290295. doi: 10.1016/j.epsl.2008.04.050.CrossRefGoogle Scholar
Miyahara, H, Yokoyama, Y, Yamaguchi, YT. 2009. Influence of the Schwabe/Hale solar cycles on climate change during the Maunder Minimum. In: Kosovichev, AG, Andrei, AH, Rozelot, J-P, editors. Solar and stellar variability: impact on earth and planets. Proceedings IAU Symposium. 5(S264):427433. doi: 10.1017/S1743921309993048 Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240242. doi: 10.1038/nature11123.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013a. Lengths of Schwabe cycles in the seventh and eighth centuries indicated by precise measurement of carbon-14 content in tree rings. Journal of Geophysical Research: Space Physics 118(12):74837487. doi: 10.1002/2012JA018320.Google Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013b. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748. doi: 10.1038/ncomms278.CrossRefGoogle ScholarPubMed
Myhre, G, Shindell, D, Bréon, F-M, Collins, W, Fuglestvedt, J, Huang, J, Koch, D, Lamarque, J-F, Lee, D, Mendoza, B, et al. 2013. Anthropogenic and Natural Radiative Forcing. In: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM, editors. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press. p. 659740.Google Scholar
Oeschger, H, Beer, J. 1990. The past 5000 years history of solar modulation of cosmic radiation from 10Be and 14C studies Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 330(1615):471480.CrossRefGoogle Scholar
Pearson, GW, Qua, F. 1993. High-precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840–5000 BC: a correction. Radiocarbon 35(1):105124.CrossRefGoogle Scholar
Pearson, GW, Pilcher, JR, Baillie, MGL, Corbett, DM, Qua, F. 1986. High-precision C-14 measurement of Irish oaks to show the natural C-14 variations from AD 1840 to 5210 BC. Radiocarbon 28(2B):911934.CrossRefGoogle Scholar
Perone, A, Lombardi, F, Marchetti, M, Tognetti, R, Lasserre, B. 2016. Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America. Global and Planetary Change 145:110.CrossRefGoogle Scholar
Raisbeck, GM, Yiou, F, Jouzel, J, Petit, JR. 1990. 10Be and δ2H in polar ice cores as a probe of the solar variability’s influence on climate. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 330(1615):463470.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, et al. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10291058.Google Scholar
Rigozo, NR, Nordemann, DJN, Evangelista da Silva, H, de Souza Echer, MP, Echer, E. 2007. Solar and climate signal records in tree ring width from Chile (AD 1587–1994). Planetary and Space Science 55(1):158164.CrossRefGoogle Scholar
Rubino, M, Etheridge, DM, Trudinger, CM, Allison, CE, Battle, MO, Langenfelds, RL, Steele, LP, Curran, M, Bender, M, White, JWC, et al. 2013. A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres 118(15):84828499.Google Scholar
Scuderi, LA. 1993. A 2000-year tree ring record of annual temperatures in the Sierra Nevada Mountains. Science 259(5100):14331436.CrossRefGoogle ScholarPubMed
SILSO Sunspot index and long-term solar observation. 2019. Brussels [Belgium]: Royal Observatory of Belgium; [accessed 2019 Jan 28]. http://www.sidc.be/silso/yearlyssnplot.Google Scholar
Solanki, SK, Krivova, NA. 2003. Can solar variability explain global warming since 1970? Journal of Geophysical Research 108(A5):1200. doi: 10.1029/2002JA009753.CrossRefGoogle Scholar
Soon, W, Connolly, R, Connolly, M. 2015. Re-evaluating the role of solar variability on Northern Hemisphere temperature trends since the 19th century. Earth-Science Reviews 150: 409452.CrossRefGoogle Scholar
Steinhilber, F, Beer, J. 2013. Prediction of solar activity for the next 500 years. Journal of Geophysical Research: Space Physics 118(5):18611867. doi: 10.1002/jgra.50210.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1987. Tree cellulose 13C/12C isotope ratios and climatic change. Nature 328(6125):5860.CrossRefGoogle Scholar
Stuiver, M, Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon 35(1):3566.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3(4):289305.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):11271151.CrossRefGoogle Scholar
Swetnam, TW, Baisan, CH. 2003. Tree-ring reconstructions of fire and climate history in the Sierra Nevada and southwestern United States. In: Veblen, TT, Baker, WL, Montenegro, G, Swetnam, TW, editors. Fire and climatic change in temperate ecosystems of the western Americas. New York (NY): Springer-Verlag. p. 158195.CrossRefGoogle Scholar
Usoskin, IG, Kovaltsov, GA. 2012. Occurrence of extreme solar particle events: assessment from historical proxies. Astrophysical Journal 757(1):16. doi: 10.1088/0004-637X/757/1/92.CrossRefGoogle Scholar
Usoskin, IG, Kromer, B. 2005. Reconstruction of the 14C production rate from measured relative abundance. Radiocarbon 47(1):3137.CrossRefGoogle Scholar
Weatherspoon, CP. 1990. Sequoiadendron giganteum (Lindl.) Buchholz Giant Sequoia. Taxodiaceae Redwood family. In: Bums, RM, Honkala, BH, technical coordinators. Silvics of North America, Volume 1. Conifers. Agriculture Handbook 654. Washington (DC): U.S. Department of Agriculture. p. 552562.Google Scholar
Witkin, DB. 1992. Production of impurities in benzene synthesis for liquid scintillation counting and its effect on high-precision radiocarbon measurements [thesis]. Tucson (AZ): University of Arizona.Google Scholar
Yu, Z, Ito, E. 1999. Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology 27(3):263266.2.3.CO;2>CrossRefGoogle Scholar
Supplementary material: File

Eastoe et al. supplementary material

Eastoe et al. supplementary material 1

Download Eastoe et al. supplementary material(File)
File 921.5 KB