Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T11:01:42.206Z Has data issue: false hasContentIssue false

14C Dating and Material Analysis of the Lime Burial of Cova de Na Dent (Mallorca, Spain)

Published online by Cambridge University Press:  09 February 2016

Guy De Mulder*
Affiliation:
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000 Ghent, Belgium
Roald Hayen
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Tess Van den Brande
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Louise Decq
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Magdalena Salas Burguera
Affiliation:
Museum of Manacor's History, Carretera Cales de Mallorca km. 1,5, 07500 Manacor, Balearic Islands, Spain
Damià Ramis
Affiliation:
Natural History Society of the Balearics, Margarida Xirgú 16, 07011 Palma de Mallorca, Balearic Islands, Spain
Herlinde Borms
Affiliation:
Antwerp Society for Roman Archaeology (AVRA), Groenenborgerlaan 35, 2610 Wilrijk, Belgium
Mark Van Strydonck
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
*
Corresponding author. Email: Guy.DeMulder@UGent.be.

Abstract

Lime burials are a characteristic phenomenon of the protohistoric funerary tradition on the Balearic Islands. At Cova de Na Dent, a lime burial has been sampled for analysis. The lime burial was made up of lime and fragmented bones. Six layers were sampled and described in the laboratory according to their color, the consistency of the deposition, and the aspect and quantity of the bone fragments. Bone samples and lime were dated. The lime was analyzed by using petrographic analysis, X-ray diffraction, FTIR spectroscopy, and simultaneous thermal analysis. The results show that the bones were cremated in the presence of crushed rock carbonate. The 14C dates on the lime suggest an earlier chronology for this ritual, starting in the Bronze Age, as generally is accepted.

Type
Balearic Islands: New Data for an Old Story
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakolas, A, Biscontin, G, Moropoulou, A, Zendri, E. 1998. Characterization of structural Byzantine mortars by thermogravimetric analysis. Thermochimica Acta 321(1–2):151–60.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Castro Martinez, PV, Gili Suriñach, S, González Marcén, P, Lull, V, Micó Perez, R, Rihuete Herrada, C. 1997. Radiocarbon dating and the Prehistory of the Balearic Islands. Proceedings of the Prehistoric Society 63:5586.Google Scholar
De Mulder, G, Van Strydonck, M. 2012. Un descubrimiento imprevisto. Nuevos hallazgos de ceramic en Son Matge. Bolletí de la Societat Arqueològica Lulliana 68:1525.Google Scholar
Hüls, CM, Erlenkeuser, H, Nadeau, M-J, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2):587–99.CrossRefGoogle Scholar
Micó Pérez, R. 2005. Cronologià absoluta y periodización de la prehistoria de las Islas Baleares. BAR International Series 1373. Oxford: Tempus Reparatum. 621 p.Google Scholar
Micó Pérez, R. 2006. Radiocarbon dating and Balearic prehistory: reviewing the periodization of the prehistoric sequence. Radiocarbon 48(3):421–4.Google Scholar
Nadeau, M-J, Grootes, PM, Schliecher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–5.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Rowland, RA, Beck, CW. 1952. Determination of small quantities of dolomite by differential thermal analysis. American Mineralogist 37:7682.Google Scholar
Stiner, MC, Kuhn, SL, Weiner, S, Bar-Yosef, O. 1995. Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22(2):223–37.CrossRefGoogle Scholar
Surovell, TA, Stiner, MC. 2001. Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. Journal of Archaeological Science 28(6):663–42.Google Scholar
Van Strydonck, M, van der Borg, K. 1990–1991. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin of the Royal Institute for Cultural Heritage 23:228–34.Google Scholar
Van Strydonck, M, Waldren, WH. 1990. Radiocarbon dating of lime burials. In: Mook, WG, Waterbolk, HT, editors. Proceedings of the Second International Symposium 14C and Archaeology Groningen, 1987. PACT 29:403–14.Google Scholar
Van Strydonck, M, Waldren, WH. 1995. Radiocarbon dating of the Son Matge rock shelter. In: Waldren, WH, Ensenyat, JA, Kennard, RC, editors. Ritual, Rites and Religion in Prehistory. IIIrd Deya International Conference of Prehistory. BAR International Series 611, Volume I. Oxford: Tempus Reparatum. p 164–82.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Maréchal, J. 1982–1983. A further step in the radiocarbon dating of old mortars. Bulletin of the Royal Institute for Cultural Heritage 19:155–71.Google Scholar
Van Strydonck, M, Dupas, M, Keppens, E. 1989. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 31(3):610–8.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553–68.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2):578–86.Google Scholar
Van Strydonck, M, Boudin, M, Decq, L, Van den Brande, T, Borms, H, Ramis, D, De Mulder, G. 2011. AMS 14C dating of Balearic lime burials. Radiocarbon 53(4):563–74.Google Scholar
Van Strydonck, M, Decq, L, Van den Brande, T, Boudin, M, Ramis, D, Borms, H, De Mulder, G. 2013. The protohistoric ‘quicklime burials’ from the Balearic Islands: cremation or inhumation. Osteoarchaeology. doi: 10.1002/oa.2307.Google Scholar
Waldren, WH, Van Strydonck, M. 1995. Deed or murder most foul? Ritual, rite or religion? Mallorca inhumation in quicklime. In: Waldren, WH, Ensenyat, JA, Kennard, RC, editors. Ritual, Rites and Religion in Prehistory. IIIrd Deya International Conference of Prehistory. BAR International Series 611, Volume I. Oxford: Tempus Reparatum. p 146–63.Google Scholar